

Welcome to NAPALM’s documentation!

NAPALM (Network Automation and Programmability Abstraction Layer with Multivendor support) is a Python library that implements a set of functions to interact with different network device Operating Systems using a unified API.

NAPALM supports several methods to connect to the devices, to manipulate configurations or to retrieve data.

Supported Network Operating Systems:

	Arista EOS

	Cisco IOS

	Cisco IOS-XR

	Cisco NX-OS

	Juniper JunOS

extras

In addition to the core drivers napalm also supports community driven drivers. You can find more information about them here: Community Drivers

Selecting the right driver

You can select the driver you need by doing the following:

>>> from napalm import get_network_driver
>>> get_network_driver('eos')
<class napalm.eos.eos.EOSDriver at 0x10ebad6d0>
>>> get_network_driver('iosxr_netconf')
<class napalm.iosxr_netconf.iosxr_netconf.IOSXRNETCONFDriver at 0x10ad170f0>
>>> get_network_driver('iosxr')
<class napalm.iosxr.iosxr.IOSXRDriver at 0x10ec90050>
>>> get_network_driver('junos')
<class napalm.junos.junos.JunOSDriver at 0x10f8f61f0>
>>> get_network_driver('nxos')
<class napalm.nxos.nxos.NXOSDriver at 0x10f9304c8>
>>> get_network_driver('ios')
<class napalm.ios.ios.IOSDriver at 0x10f9b0738>

Documentation

	Installation
	Full installation

	OS Package Managers

	Dependencies

	Tutorials
	Outline

	Installation

	Setting up the lab

	Programming samples

	Changing the Configuration

	Context Manager

	Extend Driver

	Wrapping up

	napalm-ansible

	Unit tests: Mock driver

	Validating deployments
	Documentation

	Example

	CLI & Ansible

	Why this and what’s next

	Supported Devices
	General support matrix

	Configuration support matrix

	Getters support matrix

	Other methods

	Available configuration templates

	Caveats

	Optional arguments

	Command Line Tool
	Debug Mode

	NetworkDriver

	YANG

	napalm-logs

	Integrations
	napalm-ansible

	Contributing
	How to Contribute

	New Feature

	Bugfixes

	Documentation

	Proposing a new driver

	Development
	Testing Framework

	Testing Matrix

	Triaging Issues and Pull Requests

	Hackathons
	Hackathon 2016

Installation

Full installation

You can install napalm with pip:

pip install napalm

That will install all the core drivers currently available.

Note

Beginning with release 4.0.0 and later, NAPALM offers support for Python
3.7+ only.

Note

Beginning with release 3.0.0 and later, NAPALM offers support for Python
3.6+ only.

OS Package Managers

Some execution environments offer napalm through a system-level package manager. Installing with pip outside of a user profile or virtualenv/venv is inadvisable in these cases.

FreeBSD

pkg install net-mgmt/py-napalm

This will install napalm and all drivers and dependencies for the default version(s) of python. To install for a specific version, python X.Y, if supported:

pkg install pyXY-napalm

Dependencies

Although dependencies for the transport libraries are solved by pip, on some operating systems there are some particular requirements:

	napalm-ios dependencies

	napalm-iosxr dependencies

	napalm-junos dependencies

napalm-ios dependencies

Ubuntu and Debian

sudo apt-get install -y --force-yes libssl-dev libffi-dev python-dev python-cffi

RedHat and CentOS

sudo yum install -y python-pip gcc openssl openssl-devel libffi-devel python-devel

napalm-iosxr dependencies

Ubuntu and Debian

sudo apt-get install -y --force-yes libssl-dev libffi-dev python-dev python-cffi

RedHat and CentOS

sudo yum install -y python-pip gcc openssl openssl-devel libffi-devel python-devel

napalm-junos dependencies

Ubuntu and Debian

sudo apt-get install -y --force-yes libxslt1-dev libssl-dev libffi-dev python-dev python-cffi

RedHat and CentOS

sudo yum install -y python-pip python-devel libxml2-devel libxslt-devel gcc openssl openssl-devel libffi-devel

Tutorials

	Outline

	Installation

	Setting up the lab

	Programming samples

	Changing the Configuration

	Context Manager

	Extend Driver

	Wrapping up

	napalm-ansible

	Unit tests: Mock driver

Outline

This tutorial gets you up-and-running quickly with NAPALM in a local virtual environment so you can see it in action in under an hour. We’ll cover the following:

	Installing the required tools

	Creating a virtual lab with an Arista device

	Manually applying configuration to the device using NAPALM

	Driving NAPALM through Python code

Note

This tutorial does not cover fully automated configuration management (e.g., using NAPALM in conjunction with Ansible, Chef, Salt, etc.). We hope that tutorials for these tools will be contributed soon so that you can evaluate the options for your particular environment.

Installation

Tools

You’ll need a few tools:

	Python

	pip [https://pip.pypa.io/en/stable/installing/]: The PyPA recommended tool for installing Python packages

	VirtualBox [https://www.virtualbox.org/]: a software virtualization tool

	Vagrant [https://www.vagrantup.com/downloads.html]: a command line utility for managing the lifecycle of virtual machines

As the focus of this tutorial is NAPALM, we don’t even scratch the surface of these tools. If you’re not familiar with them, please do some research 1 as they will be an important part of your development/ops toolkit.

Install

Install NAPALM with pip:

pip install napalm

	1

	Vagrant’s getting started guide [https://www.vagrantup.com/docs/getting-started/] is worth reading and working through.

Setting up the lab

We’ll set up a lab using VirtualBox and Vagrant, with a virtual Arista device, and get some sample files for the following steps.

Working directory

Create a directory for your files anywhere on your machine.

Arista vEOS

The Arista EOS image can be downloaded for free from the Arista site.

Create an account at https://www.arista.com/en/user-registration, and go to https://www.arista.com/en/support/software-download.

Download the latest “vEOS-lab-<version>-virtualbox.box” listed in the vEOS folder at the bottom of the page.

Add it to your vagrant box list, changing the <version>:

$ vagrant box add --name vEOS-lab-<version>-virtualbox ~/Downloads/vEOS-lab-<version>-virtualbox.box
$ vagrant box list
vEOS-lab-quickstart (virtualbox, 0)

You can delete the downloaded .box file once you have added it, as vagrant box add copies downloaded file to a designated directory (e.g., for Mac OS X and Linux: ~/.vagrant.d/boxes, Windows: C:/Users/USERNAME/.vagrant.d/boxes).

Starting Vagrant

Create a file named Vagrantfile (no file extension) in your working directory with the following content (replace VEOS_BOX by your downloaded EOS version):

Vagrantfile for the quickstart tutorial

Script configuration:
#
Arista vEOS box.
Please change this to match your installed version
(use `vagrant box list` to see what you have installed).
VEOS_BOX = "vEOS-lab-4.15.5M-virtualbox"

Vagrant.configure(2) do |config|

 config.vm.define "base" do |base|
 # This box will be downloaded and added automatically if you don't
 # have it already.
 base.vm.box = "hashicorp/precise64"
 base.vm.network :forwarded_port, guest: 22, host: 12200, id: 'ssh'
 base.vm.network "private_network", virtualbox__intnet: "link_1", ip: "10.0.1.100"
 base.vm.network "private_network", virtualbox__intnet: "link_2", ip: "10.0.2.100"
 base.vm.provision "shell", inline: "apt-get update; apt-get install lldpd -y"
 end

 config.vm.define "eos" do |eos|
 eos.vm.box = VEOS_BOX
 eos.vm.network :forwarded_port, guest: 22, host: 12201, id: 'ssh'
 eos.vm.network :forwarded_port, guest: 443, host: 12443, id: 'https'
 eos.vm.network "private_network", virtualbox__intnet: "link_1", ip: "169.254.1.11", auto_config: false
 eos.vm.network "private_network", virtualbox__intnet: "link_2", ip: "169.254.1.11", auto_config: false
 end

end

The above content is also available on GitHub [https://raw.githubusercontent.com/napalm-automation/napalm/master/docs/tutorials/Vagrantfile].

This Vagrantfile creates a base box and a vEOS box when you call vagrant up:

$ vagrant up --provider virtualbox
... [output omitted] ...

$ vagrant status
Current machine states:
base running (virtualbox)
eos running (virtualbox)

You may see some errors when the eos box is getting created 1.

Troubleshooting

	After running vagrant up, ensure that you can ssh to the box with vagrant ssh eos.

	If you receive the warning “eos: Warning: Remote connection disconnect. Retrying…”, see this StackOverflow post [http://stackoverflow.com/questions/22575261/vagrant-stuck-connection-timeout-retrying].

Sample files

There are some sample Arista vEOS configuration files on GitHub [https://github.com/napalm-automation/napalm/blob/master/docs/tutorials/sample_configs]. You can download them to your machine by copying them from GitHub, or using the commands below:

$ for f in new_good.conf merge_good.conf merge_typo.conf; do
$ wget https://raw.githubusercontent.com/napalm-automation/napalm/master/docs/tutorials/sample_configs/$f
$ done

(Note: please open a GitHub issue if these URLs are invalid.)

	1

	Currently, vagrant up with the eos box prints some warnings: “No guest additions were detected on the base box for this VM! Guest additions are required for forwarded ports, shared folders, host only networking, and more. If SSH fails on this machine, please install the guest additions and repackage the box to continue. This is not an error message; everything may continue to work properly, in which case you may ignore this message.” This is not a reassuring message, but everything still seems to work correctly.

Programming samples

NAPALM tries to provide a common interface and mechanisms to push configuration and retrieve state data from network devices. This method is very useful in combination with tools like Ansible [http://www.ansible.com], which in turn allows you to manage a set of devices independent of their network OS.

Note

These samples assume you have set up your virtual lab (see Setting up the lab), and that the ‘eos’ box is accessible via point 12443 on your machine. You should also have the sample configuration files saved locally.

Now that you have installed NAPALM (see Installation) and set up your virtual lab, you can try running some sample scripts to demonstrate NAPALM in action. You can run each of the scripts below by either pulling the files from the GitHub repository, or you can copy the content to a local script (e.g., sample_napalm_script.py) and run it.

For people new to Python:

	the script name should not conflict with any existing module or package. For example, don’t call the script napalm.py.

	run a Python script with $ python your_script_name.py.

Load/Replace configuration

Create a file called load_replace.py in a folder with the following content:

Sample script to demonstrate loading a config for a device.
#
Note: this script is as simple as possible: it assumes that you have
followed the lab setup in the quickstart tutorial, and so hardcodes
the device IP and password. You should also have the
'new_good.conf' configuration saved to disk.
from __future__ import print_function

import napalm
import sys
import os

def main(config_file):
 """Load a config for the device."""

 if not (os.path.exists(config_file) and os.path.isfile(config_file)):
 msg = "Missing or invalid config file {0}".format(config_file)
 raise ValueError(msg)

 print("Loading config file {0}.".format(config_file))

 # Use the appropriate network driver to connect to the device:
 driver = napalm.get_network_driver("eos")

 # Connect:
 device = driver(
 hostname="127.0.0.1",
 username="vagrant",
 password="vagrant",
 optional_args={"port": 12443},
)

 print("Opening ...")
 device.open()

 print("Loading replacement candidate ...")
 device.load_replace_candidate(filename=config_file)

 # Note that the changes have not been applied yet. Before applying
 # the configuration you can check the changes:
 print("\nDiff:")
 print(device.compare_config())

 # You can commit or discard the candidate changes.
 try:
 choice = raw_input("\nWould you like to commit these changes? [yN]: ")
 except NameError:
 choice = input("\nWould you like to commit these changes? [yN]: ")
 if choice == "y":
 print("Committing ...")
 device.commit_config()
 else:
 print("Discarding ...")
 device.discard_config()

 # close the session with the device.
 device.close()
 print("Done.")

if __name__ == "__main__":
 if len(sys.argv) < 2:
 print('Please supply the full path to "new_good.conf"')
 sys.exit(1)
 config_file = sys.argv[1]
 main(config_file)

Run the script, passing the path to the new_good.conf file as an argument:

python load_replace.py ../sample_configs/new_good.conf

Changing the Configuration

NAPALM tries to provide a common interface and mechanisms to push configuration and retrieve state data from network devices. This method is very useful in combination with tools like Ansible [http://www.ansible.com], which in turn allows you to manage a set of devices independent of their network OS.

Connecting to the Device

Use the appropriate network driver to connect to the device:

>>> from napalm import get_network_driver
>>> driver = get_network_driver('eos')
>>> device = driver('192.168.76.10', 'dbarroso', 'this_is_not_a_secure_password')
>>> device.open()

Configurations can be replaced entirely or merged into the existing device config.
You can load configuration either from a string or from a file.

Replacing the Configuration

To replace the configuration do the following:

>>> device.load_replace_candidate(filename='test/unit/eos/new_good.conf')

Note that the changes have not been applied yet. Before applying the configuration you can check the changes:

>>> print(device.compare_config())
+ hostname pyeos-unittest-changed
- hostname pyeos-unittest
router bgp 65000
 vrf test
 + neighbor 1.1.1.2 maximum-routes 12000
 + neighbor 1.1.1.2 remote-as 1
 - neighbor 1.1.1.1 remote-as 1
 - neighbor 1.1.1.1 maximum-routes 12000
 vrf test2
 + neighbor 2.2.2.3 remote-as 2
 + neighbor 2.2.2.3 maximum-routes 12000
 - neighbor 2.2.2.2 remote-as 2
 - neighbor 2.2.2.2 maximum-routes 12000
interface Ethernet2
+ description ble
- description bla

If you are happy with the changes you can commit them:

>>> device.commit_config()

On the contrary, if you don’t want the changes you can discard them:

>>> device.discard_config()

Merging Configuration

Merging configuration is similar, but you need to load the configuration with the merge method:

>>> device.load_merge_candidate(config='hostname test\ninterface Ethernet2\ndescription bla')
>>> print(device.compare_config())
configure
hostname test
interface Ethernet2
description bla
end

If you are happy with the changes you can commit them:

>>> device.commit_config()

On the contrary, if you don’t want the changes you can discard them:

>>> device.discard_config()

Committing the Configuration with a Required Confirmation

For certain platforms, you can also commit the configuration and set a revert timer. If you do not confirm the commit, by executing confirm_commit(), before the revert timer expires, then the configuration will be automatically rolled back to its previous state (and the candidate configuration will be discarded):

Load new candidate config
>>> device.load_replace_candidate(filename=filename)

Look at the pending changes
>>> print(device.compare_config())
@@ -5,6 +5,8 @@
transceiver qsfp default-mode 4x10G
!
hostname arista9-napalm
+!
+ntp server 130.126.24.24
!
spanning-tree mode rapid-pvst
!

Commit the changes with a 300 second revert timer.
device.commit_config(revert_in=300)

You can now use the has_pending_commit() method to check for an in-process commit-confirm
>>> device.has_pending_commit()
True

To confirm the commit (i.e. ensure the change is permanently committed).
>>> device.confirm_commit()

At this point there should be no pending commits.
>>> device.has_pending_commit()
False

Immediately Canceling a Pending Commit-Confirm

Alternatively, to immediately cancel a pending commit_config with the revert timer set, you can execute the rollback() method:

>>> device.load_replace_candidate(filename=filename)
>>> device.commit_config(revert_in=300)
>>> device.has_pending_commit()
True

>>> device.rollback()
>>> device.has_pending_commit()
False

At this point, our change would have been rolled-back (the change in this case added an 'ntp server').
>>> output = device.get_config()["running"]
>>> "ntp" in output
False

Allowing the Revert Timer to Expire

Finally, you can cancel a pending commit-confirm by letting the revert timer expire:

>>> device.load_replace_candidate(filename=filename)
>>> device.commit_config(revert_in=60)
>>> device.has_pending_commit()
True

Sleeping 80 seconds
>>> time.sleep(80)

The device has automatically rolled-back the config to its previous state.
>>> device.has_pending_commit()
False

Rollback Changes

If for some reason you committed the changes and you want to rollback:

>>> device.rollback()

Disconnecting

To close the session with the device just do:

>>> device.close()

Context Manager

In the previous tutorial we used the methods open() to connect to the device and close() to disconnect.
Using those methods are useful if you want to do complex or asynchronous code. However, for most situations you should
try to stick with the context manager. It handles opening and closing the session automatically and it’s the
pythonic way:

>>> from napalm import get_network_driver
>>> driver = get_network_driver('eos')
>>> with driver('localhost', 'vagrant', 'vagrant', optional_args={'port': 12443}) as device:
... print(device.get_facts())
... print(device.get_interfaces_counters())
...
{'os_version': u'4.15.2.1F-2759627.41521F', 'uptime': 2010, 'interface_list': [u'Ethernet1', u'Ethernet2', u'Management1'], 'vendor': u'Arista', 'serial_number': u'', 'model': u'vEOS', 'hostname': u'NEWHOSTNAME', 'fqdn': u'NEWHOSTNAME'}
{u'Ethernet2': {'tx_multicast_packets': 1028, 'tx_discards': 0, 'tx_octets': 130744, 'tx_errors': 0, 'rx_octets': 0, 'tx_unicast_packets': 0, 'rx_errors': 0, 'tx_broadcast_packets': 0, 'rx_multicast_packets': 0, 'rx_broadcast_packets': 0, 'rx_discards': 0, 'rx_unicast_packets': 0}, u'Management1': {'tx_multicast_packets': 0, 'tx_discards': 0, 'tx_octets': 99664, 'tx_errors': 0, 'rx_octets': 105000, 'tx_unicast_packets': 773, 'rx_errors': 0, 'tx_broadcast_packets': 0, 'rx_multicast_packets': 0, 'rx_broadcast_packets': 0, 'rx_discards': 0, 'rx_unicast_packets': 0}, u'Ethernet1': {'tx_multicast_packets': 1027, 'tx_discards': 0, 'tx_octets': 130077, 'tx_errors': 0, 'rx_octets': 0, 'tx_unicast_packets': 0, 'rx_errors': 0, 'tx_broadcast_packets': 0, 'rx_multicast_packets': 0, 'rx_broadcast_packets': 0, 'rx_discards': 0, 'rx_unicast_packets': 0}}

Extend Driver

Occassionally you may have a need that does not fit within one of Napalm’s methods, nor will support ever be
expected. As an example, if you wanted to build a parser to filter your unique banner and return structured data
from it, you could extend the driver. The positive side effect is that tools such as Salt, Ansible, and Netbox implicitly
have access to these methods.

The get_driver method, is simply looking for a custom_napalm.<os> driver first, and then fail to the normal napalm driver.

try:
 module = importlib.import_module("custom_" + module_install_name)
except ImportError:
 module = importlib.import_module(module_install_name)

Extending a Driver

By simply adding custom_napalm folder with an __init__.py and an <os>.py (e.g. ios.py) with class built to inherit
the os class, you can expose all of the napalm methods, and your custom ones. This may sound like a lot, but this is
here is a simple example of how to inherit the OS driver and all the requirements.

from napalm.ios.ios import IOSDriver
class CustomIOSDriver(IOSDriver):
 """Custom NAPALM Cisco IOS Handler."""
 def get_my_custom_method(self):
 pass

Sample python path custom_napalm directory.:

custom_napalm/
├── __init__.py
└── ios.py

Creating a Custom Method

Bulding on the previous example, we can create a a simple parse to return what our custom enviornment is looking for.

from napalm.ios.ios import IOSDriver
class CustomIOSDriver(IOSDriver):
 """Custom NAPALM Cisco IOS Handler."""

 def get_my_banner(self):
 command = 'show banner motd'
 output = self._send_command(command)

 return_vars = {}
 for line in output.splitlines():
 split_line = line.split()
 if "Site:" == split_line[0]:
 return_vars["site"] = split_line[1]
 elif "Device:" == split_line[0]:
 return_vars["device"] = split_line[1]
 elif "Floor:" == split_line[0]:
 return_vars["floor"] = split_line[1]
 elif "Room:" == split_line[0]:
 return_vars["room"] = split_line[1]
 return return_vars

Which can build.

>>> import napalm
>>> ios_device='10.1.100.49'
>>> ios_user='ntc'
>>> ios_password='ntc123'
>>> driver = napalm.get_network_driver('ios')
>>> device = driver(ios_device, ios_user, ios_password)
>>> device.open()
>>> device.get_my_banner()
{'device': u'NYC-SW01', 'room': u'1004', 'site': u'NYC', 'floor': u'10'}

Custom Driver Notes

Please note that since there is no base class get_my_banner method, if you attempt to access
this method from an os that is not supporting, then it will fail ungracefully. To alleviate
that, you can raise NotImplementedError methods in other os’s. It is up to the user to
be able to support their own environment.

from napalm.ios.ios import IOSDriver
class CustomIOSDriver(IOSDriver):
 """Custom NAPALM Cisco IOS Handler."""

 def get_my_banner(self):
 raise NotImplementedError

This feature is meant to allow for maximum amount of flexibility, but it is up to the user to ensure they do
not run into namespace issues, and follow best practices.

Wrapping up

You’ve now tried the main pieces of NAPALM:

	using NAPALM to get, set, and diff the configuration of a device manually

	driving NAPALM using Python

Shutting down

Shut down the Vagrant virtual boxes. You can recreate them later using vagrant up if needed.:

$ vagrant destroy -f

Next Steps

There are many possible steps you could take next:

	create Vagrant boxes for other devices

	explore using configuration management tools (Ansible, Chef, Salt, etc.)

Thanks for trying NAPALM! Please contribute to this documentation and help grow the NAPALM community!

napalm-ansible

Collection of ansible modules that use napalm [https://github.com/napalm-automation/napalm] to retrieve data or modify configuration on networking devices.

Modules

The following modules are currently available:

	napalm_get_facts

	napalm_install_config

	napalm_validate

Install

To install, clone napalm-ansible into your ansible module path. This will depend on your own setup and contents of your ansible.cfg file which tells ansible where to look for modules. For more in-depth explanation, see the Ansible Docs [http://docs.ansible.com/ansible/intro_configuration.html#library].

If your ansible.cfg looks like:

[defaults]
library = ~/workspace/napalm-ansible

Then you can do the following:

cd ~/workspace

git clone

If your ansible.cfg looks like:

[defaults]
library = ~/workspace/napalm-ansible

Then you can do the following:

cd ~/workspace

git clone https://github.com/napalm-automation/napalm-ansible.git

user@hostname:~/workspace ls -la
total 12
drwxrwxr-x 3 user user 4096 Feb 26 12:51 .
drwxr-xr-x 7 user user 4096 Feb 26 12:49 ..
drwxrwxr-x 5 user user 4096 Feb 26 12:51 napalm-ansible

From here you would add your playbook(s) for your project, for example:

mkdir ansible-playbooks

user@hostname:~/workspace ls -la
total 12
drwxrwxr-x 3 user user 4096 Feb 26 12:51 .
drwxr-xr-x 7 user user 4096 Feb 26 12:49 ..
drwxrwxr-x 5 user user 4096 Feb 26 12:51 napalm-ansible
drwxrwxr-x 5 user user 4096 Feb 26 12:53 ansible-playbooks

Dependencies

napalm [https://github.com/napalm-automation/napalm] 1.00.0 or later

Examples

Example to retrieve facts from a device:

- name: get facts from device
 napalm_get_facts:
 hostname={{ inventory_hostname }}
 username={{ user }}
 dev_os={{ os }}
 password={{ passwd }}
 filter='facts,interfaces,bgp_neighbors'
 register: result

- name: print data
 debug: var=result

Example to install config on a device:

- assemble:
 src=../compiled/{{ inventory_hostname }}/
 dest=../compiled/{{ inventory_hostname }}/running.conf

 - napalm_install_config:
 hostname={{ inventory_hostname }}
 username={{ user }}
 dev_os={{ os }}
 password={{ passwd }}
 config_file=../compiled/{{ inventory_hostname }}/running.conf
 commit_changes={{ commit_changes }}
 replace_config={{ replace_config }}
 get_diffs=True
 diff_file=../compiled/{{ inventory_hostname }}/diff

Example to get compliance report:

- name: GET VALIDATION REPORT
 napalm_validate:
 username: "{{ un }}"
 password: "{{ pwd }}"
 hostname: "{{ inventory_hostname }}"
 dev_os: "{{ dev_os }}"
 validation_file: validate.yml

A More Detailed Example

It’s very often we come to these tools needing to know how to run before we can walk.
Please review the Ansible Documentation [http://docs.ansible.com/ansible/playbooks.html] as this will answer some basic questions.
It is also advised to have some kind of yaml linter [https://pypi.python.org/pypi/yamllint] or syntax checker available.

Non parameterized example with comments to get you started:

- name: Test Inventory #The Task Name
 hosts: cisco #This will be in your ansible inventory file
 connection: local #Required
 gather_facts: no #Do not gather facts

 tasks: #Begin Tasks
 - name: get facts from device #Task Name
 napalm_get_facts: #Call the napalm module, in this case napal_get_facts
 optional_args: {'secret': password} #The enable password for Cisco IOS
 hostname: "{{ inventory_hostname }}" #This is a parameter and is derived from your ansible inventory file
 username: 'user' #The username to ssh with
 dev_os: 'ios' #The hardware operating system
 password: 'password' #The line level password
 filter: 'facts' #The list of items you want to retrieve. The filter keyword is _inclusive_ of what you want
 register: result #Ansible function for collecting output

 - name: print results #Task Name
 debug: msg="{{ result }}" #Display the collected output

Keeping with our example dir at the beginning of the Readme, we now have this layout:

user@host ~/workspace/ansible-playbooks
08:16 $ ls -la
total 32
drwxrwxr-x 3 user user 4096 Feb 26 07:24 .
drwxrwxr-x 8 user user 4096 Feb 25 16:32 ..
-rw-rw-r-- 1 user user 404 Feb 26 07:24 inventory.yaml

You would run this playbook like as:

cd ~/workspace

ansible-playbook ansible-playbooks/inventory.yaml

And it should produce output similar to this:

PLAY [Push config to switch group.] **

TASK [get facts from device] ***
ok: [192.168.0.11]

TASK [print results] ***
ok: [192.168.0.11] => {
 "msg": {
 "ansible_facts": {
 "facts": {
 "fqdn": "router1.not set",
 "hostname": "router1",
 "interface_list": [
 "FastEthernet0/0",
 "GigabitEthernet1/0",
 "GigabitEthernet2/0",
 "GigabitEthernet3/0",
 "GigabitEthernet4/0",
 "POS5/0",
 "POS6/0"
],
 "model": "7206VXR",
 "os_version": "7200 Software (C7200-ADVENTERPRISEK9-M), Version 15.2(4)S7, RELEASE SOFTWARE (fc4)",
 "serial_number": "0123456789",
 "uptime": 420,
 "vendor": "Cisco"
 }
 },
 "changed": false
 }
}

PLAY RECAP ***
192.168.0.11 : ok=2 changed=0 unreachable=0 failed=0

Unit tests: Mock driver

A mock driver is a software that imitates the response pattern of another
system. It is meant to do nothing but returns the same predictable result,
usually of the cases in a testing environment.

A driver mock can mock all actions done by a common napalm driver. It can be
used for unit tests, either to test napalm itself or inside external projects
making use of napalm.

Overview

For any action, the mock driver will use a file matching a specific pattern
to return its content as a result.

Each of these files will be located inside a directory specified at the driver
initialization. Their names depend on the entire call name made to the
driver, and about their order in the call stack.

Replacing a standard driver by a mock

Get the driver in napalm:

>>> import napalm
>>> driver = napalm.get_network_driver('mock')

And instantiate it with any host and credentials:

device = driver(
 hostname='foo', username='user', password='pass',
 optional_args={'path': path_to_results}
)

Like other drivers, mock takes optional arguments:

	path - Optional directory where results files are located (defaults to the current directory).

Open the driver:

>>> device.open()

A user should now be able to call any function of a standard driver:

>>> device.get_network_instances()

But should get an error because no mocked data is yet written:

NotImplementedError: You can provide mocked data in get_network_instances.1

Mocked data

We will use /tmp/mock as an example of a directory that will contain
our mocked data. Define a device using this path:

>>> with driver('foo', 'user', 'pass', optional_args={'path': '/tmp/mock'}) as device:

Mock a single call

In order to be able to call, for example, device.get_interfaces(), a mocked
data is needed.

To build the file name that the driver will look for, take the function name
(get_interfaces) and suffix it with the place of this call in the device
call stack.

Note

device.open() counts as a command. Each following order of call will
start at 1.

Here, get_interfaces is the first call made to device after open(),
so the mocked data need to be put in /tmp/mock/get_interfaces.1:

{
 "Ethernet1/1": {
 "is_up": true, "is_enabled": true, "description": "",
 "last_flapped": 1478175306.5162635, "speed": 10000,
 "mac_address": "FF:FF:FF:FF:FF:FF"
 },
 "Ethernet1/2": {
 "is_up": true, "is_enabled": true, "description": "",
 "last_flapped": 1492172106.5163276, "speed": 10000,
 "mac_address": "FF:FF:FF:FF:FF:FF"
 }
}

The content is the wanted result of get_interfaces in JSON, exactly as
another driver would return it.

Mock multiple iterative calls

If /tmp/mock/get_interfaces.1 was defined and used, for any other call on
the same device, the number of calls needs to be incremented.

For example, to call device.get_interfaces_ip() after
device.get_interfaces(), the file /tmp/mock/get_interfaces_ip.2 needs
to be defined:

{
 "Ethernet1/1": {
 "ipv6": {"2001:DB8::": {"prefix_length": 64}}
 }
}

Mock a CLI call

device.cli(commands) calls are a bit different to mock, as a suffix
corresponding to the command applied to the device needs to be added. As
before, the data mocked file will start by cli and the number of calls done
before (here, cli.1). Then, the same process needs to be applied to each
command.

Each command needs to be sanitized: any special character (`` -,./``, etc.)
needs to be replaced by _. Add the index of this command as it is sent to
device.cli(). Each file then will contain the raw wanted output of its
associated command.

Example

Example with 2 commands, show interface Ethernet 1/1 and show interface
Ethernet 1/2.

To define the mocked data, create a file /tmp/mock/cli.1.show_interface_Ethernet_1_1.0:

Ethernet1/1 is up
admin state is up, Dedicated Interface

And a file /tmp/mock/cli.1.show_interface_Ethernet_1_2.1:

Ethernet1/2 is up
admin state is up, Dedicated Interface

And now they can be called:

>>> device.cli(["show interface Ethernet 1/1", "show interface Ethernet 1/2"])

Mock an error

The mock driver can raise an exception during a call, to simulate an error.
An error definition is actually a json composed of 3 keys:

	exception: the exception type that will be raised

	args and kwargs: parameters sent to the exception constructor

For example, to raise the exception ConnectionClosedException when calling
device.get_interfaces(), the file /tmp/mock/get_interfaces.1 needs to
be defined:

{
 "exception": "napalm.base.exceptions.ConnectionClosedException",
 "args": [
 "Connection closed."
],
 "kwargs": {}
}

Now calling get_interfaces() for the 1st time will raise an exception:

>>> device.get_interfaces()
ConnectionClosedException: Connection closed

As before, mock will depend on the number of calls. If a second file
/tmp/mock/get_interfaces.2 was defined and filled with some expected data
(not an exception), retrying get_interfaces() will run correctly if the first
exception was caught.

Validating deployments

Let’s say you just deployed a few devices and you want to validate your deployment. To do that, you
can write a YAML file describing the state you expect your devices to be in and tell napalm to
retrieve the state of the device and build a compliance report for you.

As always, with napalm, doing this is very easy even across multiple vendors :)

Note

Note that this is meant to validate state, meaning live data from the device, not
the configuration. Because that something is configured doesn’t mean it looks as you want.

Documentation

Writing validators files that can be interpreted by napalm is very easy. You have to start by
telling napalm how to retrieve that piece of information by using as key the name of the getter and
then write the desired state using the same format the getter would retrieve it. For example:

- get_facts:
 os_version: 7.0(3)I2(2d)
 interface_list:
 _mode: strict
 list:
 - Vlan5
 - Vlan100
 hostname: n9k2

- get_environment:
 memory:
 used_ram: '<15.0'
 available_ram: '10.0<->20.0'
 cpu:
 0/RP0/CPU0
 '%usage': '<15.0'

- get_bgp_neighbors:
 global:
 router_id: 192.0.2.2
 peers:
 _mode: strict
 192.0.2.2:
 is_enabled: true
 address_family:
 ipv4:
 sent_prefixes: 5
 received_prefixes: '<10'
 ipv6:
 sent_prefixes: 2
 received_prefixes: '<5'

- get_interfaces_ip:
 Ethernet2/1:
 ipv4:
 192.0.2.1:
 prefix_length: 30

- ping:
 _name: ping_google
 _kwargs:
 destination: 8.8.8.8
 source: 192.168.1.1
 success:
 packet_loss: 0
 _mode: strict

- ping:
 _name: something_else
 _kwargs:
 destination: 10.8.2.8
 source: 192.168.1.1
 success:
 packet_loss: 0
 _mode: strict

A few notes:

	You don’t have to validate the entire state of the device, you might want to validate certain
information only. For example, with the getter get_interfaces_ip we are only validating
that the interface Ethernet2/1 has the IP address 192.0.2.1/30. If there are other
interfaces or if that same interface has more IP’s, it’s ok.

	You can also have a more strict validation. For example, if we go to get_bgp_neighbors,
we want to validate there that the default vrf has only the BGP neighbor 192.0.2.2.
We do that by specifying at that level _mode: strict. Note that the strict mode is
specific to a level (you can add it to as many levels as you want). So, going back the the
example, we are validating that only that BGP neighbor is present on that vrf but we are not
validating that other vrfs don’t exist. We are not validating all the data inside the BGP
neighbor either, we are only validating the ones we specified.

	Lists of objects to be validated require an extra key list. You can see an example with
the get_facts getter. Lists can be strict as well. In this case, we want to make sure the
device has only those two interfaces.

	We can also use comparison on the conditions of numerical validate. For example, if you want
to validate there that the cpu``and ``memory into get_environment are 15% or less.
We can use writing comparison operators such as <15.0 or >10.0 in this case, or range
with the operator syntax of <-> such as 10.0<->20.0 or 10<->20.

	Some methods require extra arguments, for example ping. You can pass arguments to those
methods using the magic keyword _kwargs. In addition, an optional keyword _name can
be specified to override the name in the report. Useful for having a more descriptive report
or for getters than can be run multiple times

Example

Let’s say we have two devices, one running eos and another one running junos. A typical
script could start like this:

from napalm import get_network_driver
import pprint

eos_driver = get_network_driver("eos")
eos_config = {
 "hostname": "localhost",
 "username": "vagrant",
 "password": "vagrant",
 "optional_args": {"port": 12443},
}

junos_driver = get_network_driver("junos")
junos_config = {
 "hostname": "localhost",
 "username": "vagrant",
 "password": "",
 "optional_args": {"port": 12203},
}

Now, let’s validate that the devices are running a specific version and that the management IP is
the one we expect. Let’s start by writing the validator files.

	validate-eos.yml:

- get_facts:
 os_version: 4.17

- get_interfaces_ip:
 Management1:
 ipv4:
 10.0.2.14:
 prefix_length: 24
 _mode: strict

	validate-junos.yml:

- get_facts:
 os_version: 12.1X47

- get_interfaces_ip:
 ge-0/0/0.0:
 ipv4:
 10.0.2.15:
 prefix_length: 24
 _mode: strict

Note

You can use regular expressions to validate values.

As you can see we are validating that the OS running is the one we want and that the management
interfaces have only the IP we expect it to have. Now we can validate the devices like this:

>>> with eos_driver(**eos_config) as eos:
... pprint.pprint(eos.compliance_report("validate-eos.yml"))
...
{u'complies': False,
 u'skipped': [],
 'get_facts': {u'complies': False,
 u'extra': [],
 u'missing': [],
 u'present': {'os_version': {u'actual_value': u'4.15.2.1F-2759627.41521F',
 u'complies': False,
 u'nested': False}}},
 'get_interfaces_ip': {u'complies': True,
 u'extra': [],
 u'missing': [],
 u'present': {'Management1': {u'complies': True,
 u'nested': True}}}}

Let’s take a look first to the report. The first thing we have to note is the first key
complies which is telling us that overall, the device is not compliant. Now we can dig in on
the rest of the report. The get_interfaces_ip part seems to be complying just fine, however,
the get_facts is complaining about something. If we keep digging we will see that the
os_version key we were looking for is present but it’s not complying as its actual value
is not the one we specified; it is 4.15.2.1F-2759627.41521F.

Now let’s do the same for junos:

>>> with junos_driver(**junos_config) as junos:
... pprint.pprint(junos.compliance_report("validate-junos.yml"))
...
{u'complies': True,
 u'skipped': [],
 'get_facts': {u'complies': True,
 u'extra': [],
 u'missing': [],
 u'present': {'os_version': {u'complies': True,
 u'nested': False}}},
 'get_interfaces_ip': {u'complies': True,
 u'extra': [],
 u'missing': [],
 u'present': {'ge-0/0/0.0': {u'complies': True,
 u'nested': True}}}}

This is great, this device is fully compliant. We can check the outer complies key is set to
True. However, let’s see what happens if someone adds and extra IP to ge-0/0/0.0:

>>> with junos_driver(**junos_config) as junos:
... pprint.pprint(junos.compliance_report("validate-junos.yml"))
...
{u'complies': False,
 u'skipped': [],
 'get_facts': {u'complies': True,
 u'extra': [],
 u'missing': [],
 u'present': {'os_version': {u'complies': True,
 u'nested': False}}},
 'get_interfaces_ip': {u'complies': False,
 u'extra': [],
 u'missing': [],
 u'present': {'ge-0/0/0.0': {u'complies': False,
 u'diff': {u'complies': False,
 u'extra': [],
 u'missing': [],
 u'present': {'ipv4': {u'complies': False,
 u'diff': {u'complies': False,
 u'extra': [u'172.20.0.1'],
 u'missing': [],
 u'present': {'10.0.2.15': {u'complies': True,
 u'nested': True}}},
 u'nested': True}}},
 u'nested': True}}}}

After adding the extra IP it seems the device is not compliant anymore. Let’s see what happened:

	Outer complies key is telling us something is wrong.

	get_facts is fine.

	get_interfaces_ip is telling us something interesting. Note that is saying that
ge-0/0/0.0 has indeed the IPv4 address 10.0.2.15 as noted by being present and with
the inner complies set to True. However, it’s telling us that there is an extra IP
172.20.0.1.

The output might be a bit complex for humans but it’s predictable and very easy to parse so it’s
great if you want to integrate it with your documentation/reports by using simple jinja2
templates.

Skipped tasks

In cases where a method is not implemented, the validation will be skipped and the result will not count towards the result. The report will let you know a method wasn’t executed in the following manner:

...
"skipped": ["method_not_implemented",],
"method_not_implemented": {
 "reason": "NotImplemented",
 "skipped": True,
 }
...

skipped will report the list of methods that were skipped. For details about the reason you can dig into the method’s report.

CLI & Ansible

If you prefer, you can also make use of the validate functionality via the CLI with the command cl_napalm_validate or with ansible plugin. You can find more information about them here:

	CLI - https://github.com/napalm-automation/napalm/pull/168

	Ansible - https://github.com/napalm-automation/napalm-ansible/blob/master/napalm_ansible/modules/napalm_validate.py

Why this and what’s next

As mentioned in the introduction, this is interesting to validate state. You could, for example,
very easily check that your BGP neighbors are configured and that the state is up. It becomes even more
interesting if you can build the validator file from data from your inventory. That way you could
deploy your network and verify it matches your expectations all the time without human intervention.

Something else you could do is write the validation file manually prior to a maintenance based on
some gathered data from the network and on your expectations. You could, then, perform your changes
and use this tool to verify the state of the network is exactly the one you wanted. No more
forgetting things or writing one-offs scripts to validate deployments.

Supported Devices

General support matrix

	_

	EOS

	Junos

	IOS-XR (NETCONF)

	IOS-XR (XML-Agent)

	NX-OS

	NX-OS SSH

	IOS

	Driver Name

	eos

	junos

	iosxr_netconf

	iosxr

	nxos

	nxos_ssh

	ios

	Structured data

	Yes

	Yes

	Yes

	No

	Yes

	No

	No

	Minimum version

	4.15.0F

	12.1

	7.0

	5.1.0

	6.1 1

	6.3.2

	12.4(20)T

	Backend library

	pyeapi [https://github.com/arista-eosplus/pyeapi]

	junos-eznc [https://github.com/Juniper/py-junos-eznc]

	ncclient [https://github.com/ncclient/ncclient]

	pyIOSXR [https://github.com/fooelisa/pyiosxr]

	pynxos [https://github.com/networktocode/pynxos]

	netmiko [https://github.com/ktbyers/netmiko]

	netmiko [https://github.com/ktbyers/netmiko]

	Caveats

	EOS

	
	IOS-XR (NETCONF)

	
	NXOS

	NXOS

	IOS

	1

	NX-API support on the Nexus 5k, 6k and 7k families was introduced in version 7.2

Warning

Please, make sure you understand the caveats for your particular platforms before using the library.

Configuration support matrix

	_

	EOS

	Junos

	IOS-XR (NETCONF)

	IOS-XR (XML-Agent)

	NX-OS

	IOS

	Config. replace

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Config. merge

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Commit Confirm

	Yes

	Yes

	No

	No

	No

	Yes

	Compare config

	Yes

	Yes

	Yes

	Yes 2

	Yes 4

	Yes

	Atomic Changes

	Yes

	Yes

	Yes

	Yes

	Yes/No 5

	Yes/No 5

	Rollback

	Yes 3

	Yes

	Yes

	Yes

	Yes/No 5

	Yes

	2

	Hand-crafted by the API as the device doesn’t support the feature.

	3

	Not supported but emulated. Check caveats.

	4

	For merges, the diff is very simplistic. See caveats.

	5(1,2,3)

	No for merges. See caveats.

	6

	NAPALM requires Junos OS >= 14.1 for commit-confirm functionality.

Warning

Before building a workflow to deploy configuration it is important you understand what the table above means;
what are atomic changes and which devices support it, what does replacing or merging configuration mean, etc.
The key to success is to test your workflow and to try to break things on a lab first.

Getters support matrix

Note

The following table is built automatically. Every time there is a release of a supported driver a built is triggered. The result of the tests are aggregated on the following table.

 		EOS	IOS	IOSXR	IOSXR_NETCONF	JUNOS	NXOS	NXOS_SSH

 	get_arp_table	✅	✅	❌	❌	❌	❌	✅

 	get_bgp_config	✅	✅	✅	✅	✅	❌	❌

 	get_bgp_neighbors	✅	✅	✅	✅	✅	✅	✅

 	get_bgp_neighbors_detail	✅	✅	✅	✅	✅	❌	❌

 	get_config	✅	✅	✅	❌	✅	✅	✅

 	get_environment	✅	✅	✅	✅	✅	✅	✅

 	get_facts	✅	✅	✅	✅	✅	✅	✅

 	get_firewall_policies	❌	❌	❌	❌	❌	❌	❌

 	get_interfaces	✅	✅	✅	✅	✅	✅	✅

 	get_interfaces_counters	✅	✅	✅	✅	✅	❌	✅

 	get_interfaces_ip	✅	✅	✅	✅	✅	✅	✅

 	get_ipv6_neighbors_table	❌	✅	❌	❌	✅	❌	❌

 	get_lldp_neighbors	✅	✅	✅	✅	✅	✅	✅

 	get_lldp_neighbors_detail	✅	✅	✅	✅	✅	✅	✅

 	get_mac_address_table	✅	✅	✅	✅	✅	✅	✅

 	get_network_instances	✅	✅	❌	❌	✅	✅	✅

 	get_ntp_peers	❌	✅	✅	✅	✅	✅	✅

 	get_ntp_servers	✅	✅	✅	✅	✅	✅	✅

 	get_ntp_stats	✅	✅	✅	✅	✅	✅	❌

 	get_optics	✅	✅	❌	❌	✅	❌	✅

 	get_probes_config	❌	✅	✅	✅	✅	❌	❌

 	get_probes_results	❌	❌	✅	✅	✅	❌	❌

 	get_route_to	✅	❌	❌	❌	❌	❌	❌

 	get_snmp_information	✅	✅	✅	✅	✅	✅	✅

 	get_users	✅	✅	✅	✅	✅	✅	✅

 	get_vlans	✅	✅	❌	❌	✅	✅	✅

 	is_alive	✅	✅	✅	✅	✅	✅	✅

 	ping	✅	✅	❌	❌	✅	✅	✅

 	traceroute	✅	✅	✅	✅	✅	✅	✅

 	✅ - supported

 	❌ - not supported

 	☠ - broken

Other methods

	_

	EOS

	Junos

	IOS-XR (NETCONF)

	IOS-XR

	NX-OS

	IOS

	load_template

	✅

	✅

	✅

	✅

	✅

	✅

	ping

	✅

	✅

	❌

	❌

	✅

	✅

	traceroute

	✅

	✅

	✅

	✅

	✅

	✅

Available configuration templates

	set_hostname (JunOS, IOS-XR, IOS) - Configures the hostname of the device.

	set_ntp_peers (JunOS, IOS-XR, EOS, NXOS, IOS) - Configures NTP peers of the device.

	delete_ntp_peers (JunOS, IOS-XR, EOS, NXOS, IOS): Removes NTP peers from device’s configuration.

	set_probes (JunOS, IOS-XR): Configures RPM/SLA probes.

	schedule_probes (IOS-XR): On Cisco devices, after defining the SLA probes, it is mandatory to schedule them. Defined also for JunOS as empty template, for consistency reasons.

	delete_probes (JunOS, IOS-XR): Removes RPM/SLA probes.

Caveats

	EOS

	IOS

	NXOS

	IOS-XR (NETCONF)

Optional arguments

NAPALM supports passing certain optional arguments to some drivers. To do that you have to pass a dictionary via the
optional_args parameter when creating the object:

>>> from napalm import get_network_driver
>>> driver = get_network_driver('eos')
>>> optional_args = {'my_optional_arg1': 'my_value1', 'my_optional_arg2': 'my_value2'}
>>> device = driver('192.168.76.10', 'dbarroso', 'this_is_not_a_secure_password', optional_args=optional_args)
>>> device.open()

List of supported optional arguments

	allow_agent (ios, iosxr, nxos_ssh) - Paramiko argument, enable connecting to the SSH agent (default: False).

	alt_host_keys (ios, iosxr, nxos_ssh) - If True, host keys will be loaded from the file specified in alt_key_file.

	alt_key_file (ios, iosxr, nxos_ssh) - SSH host key file to use (if alt_host_keys is True).

	auto_probe (junos) - A timeout in seconds, for which to probe the device. Probing determines if the device accepts remote connections. If auto_probe is set to 0, no probing will be done. (default: 0).

	auto_rollback_on_error (ios) - Disable automatic rollback (certain versions of IOS support configure replace, but not rollback on error) (default: True).

	config_lock (iosxr_netconf, iosxr, junos) - Lock the config during open() (default: False).

	lock_disable (junos) - Disable all configuration locking for management by an external system (default: False).

	config_private (junos) - Configure private, no DB locking (default: False).

	canonical_int (ios) - Convert operational interface’s returned name to canonical name (fully expanded name) (default: False).

	dest_file_system (ios) - Destination file system for SCP transfers (default: flash:).

	enable_password (eos) - Password required to enter privileged exec (enable) (default: '').

	force_no_enable (ios, nxos_ssh) - Do not automatically enter enable-mode on connect (default: False).

	global_delay_factor (ios, nxos_ssh) - Allow for additional delay in command execution (default: 1).

	ignore_warning (junos) - Allows to set ignore_warning when loading configuration to avoid exceptions via junos-pyez. (default: False).

	keepalive (iosxr, junos) - SSH keepalive interval, in seconds (default: 30 seconds).

	key_file (ios, iosxr_netconf, iosxr, junos, nxos_ssh) - Path to a private key file. (default: False).

	port (eos, ios, iosxr_netconf, iosxr, junos, nxos, nxos_ssh) - Allows you to specify a port other than the default.

	secret (ios, nxos_ssh) - Password required to enter privileged exec (enable) (default: '').

	ssh_config_file (ios, iosxr, junos, nxos_ssh) - File name of OpenSSH configuration file.

	ssh_strict (ios, iosxr, nxos_ssh) - Automatically reject unknown SSH host keys (default: False, which means unknown SSH host keys will be accepted).

	ssl_verify (nxos) - Requests argument, enable the SSL certificates verification. See requests ssl-cert-verification for valid values (default: None equivalent to False).

	transport (eos, ios, nxos) - Protocol to connect with (see The transport argument for more information).

	use_keys (ios, iosxr, nxos_ssh) - Paramiko argument, enable searching for discoverable private key files in ~/.ssh/ (default: False).

	eos_autoComplete (eos) - Allows to set autoComplete when running commands. (default: None equivalent to False)

	config_encoding (iosxr_netconf) - Set encoding to either "xml" or "cli" for configuration load methods. (default: "cli")

	eos_fn0039_config (eos) - Transform old style configuration to the new style, available beginning with EOS release 4.23.0, as per FN 0039. Beware
that enabling this option will change the configuration you’re loading through NAPALM. Default: False (won’t change your configuration commands).
.. versionadded:: 3.0.1

	force_cfg_session_invalid (eos) - Force the config_session to be cleared in case of issues, like discard_config failure. (default: False)

The transport argument

Certain drivers support providing an alternate transport in the optional_args, overriding the default protocol to connect with. Allowed transports are therefore device/library dependant:

	_

	EOS

	NXOS

	IOS

	Default

	https

	https

	ssh

	Supported

	http, https, ssh

	http, https

	telnet, ssh

EOS

Minimum Version

To be able to support the compare_config, load_merge_candidate or load_replace_candidate methods you will require to run at least EOS version 4.15.0F.

The ssh driver for the config session timers requires you to run at least EOS 4.18.0F.

Multi-line/HEREDOC

EOS configuration is loaded via pyeapi.eapilib.Node.run_commands(), which by itself cannot handle multi-line commands
such as banner motd. The helper function EOSDriver._load_config() will attempt to detect HEREDOC commands in the
input configuration and convert them into a dictionary that eAPI understands

Rollback

The rollback feature is supported only when committing from the API. In reality, what the API does during the commit operation is as follows:

copy startup-config flash:rollback-0

And the rollback does:

configure replace flash:rollback-0

This means that the rollback will be fine as long as you only use this library. If you are going to do changes outside this API don’t forget to mark your last rollback point manually.

IOS

Prerequisites

IOS has no native API to play with, that’s the reason why we used the Netmiko library to interact with it.
Having Netmiko installed in your working box is a prerequisite.

Check napalm-ios/requirements.txt for Netmiko version requirement

Full ios driver support requires configuration rollback on error:

Cisco IOS requirements for 'Configuration Rollback Confirmed Change' feature.
12.2(33)SRC
12.2(33)SB
12.4(20)T
12.2(33)SXI

Downgraded ios driver support (i.e. no auto rollback on configuration error for replace operation):

Cisco IOS requirements for 'Configuration Replace and Configuration Rollback' feature.
12.3(7)T
12.2(25)S
12.3(14)T
12.2(27)SBC
12.2(31)SB2
12.2(33)SRA
12.2(33)SXH
12.2(33)SB

Note, to disable auto rollback you must add the auto_rollback_on_error=False optional argument.

Archive

IOSDriver requires that the archive functionality be enabled to perform auto-rollback on error. Make sure it’s enabled and set to a local filesystem (for example ‘flash:’ or ‘bootflash:’:

archive
 path flash:archive
 write-memory

Configuration file

	IOS requires config file to begin with a version eg. 15.0 and end marker at the end of the file. Otherwise IOS will reject configure replace operation.

	For the diff to work properly, indentation of your candidate file has to exactly match the indentation in the running config.

	Finish blocks with ! as with the running config, otherwise, some IOS version might not be able to generate the diff properly.

Self-Signed Certificate (and the hidden tab character)

Cisco IOS adds a tab character into the self-signed certificate. This exists on the quit line:

crypto pki certificate chain TP-self-signed-1429897839
 certificate self-signed 01
 3082022B 30820194 A0030201 02020101 300D0609 2A864886 F70D0101 05050030
 ...
 ...
 ...
 9353BD17 C345E1D7 71AFD125 D23D7940 2DECBE8E 46553314 396ACC63 34839EF7
 3C056A00 7E129168 F0CD3692 F53C62
 quit

The quit line reads as follows:

>>> for char in line:
... print("{}: {}".format(repr(char), ord(char)))
...
' ': 32 # space
' ': 32 # space
'\t': 9 # tab
'q': 113
'u': 117
'i': 105
't': 116
'\n': 10

This implies that you will not generally be able to copy-and-paste the self-signed certificate. As when you copy-and-paste it, the tab character gets converted to spaces.

You will need to transfer the config file directly from the device (for example, SCP the config file) or you will need to manually construct the quit line exactly right.

Cisco IOS is very particular about the self-signed certificate and will reject replace operations with an invalid certificate. Cisco IOS will also reject replace operations that are missing a certificate (when the current configuration has a self-signed certificate).

Banner

IOS requires that the banner use the ETX character (ASCII 3). This looks like a cntl-C in the file, but as a single character. It is NOT a separate ‘^’ + ‘C’ character, but an ASCII3 character:

banner motd ^C
 my banner test
^C

>>> etx_char = chr(3)
>>> with open("my_config.conf", "a") as f:
... f.write("banner motd {}\n".format(etx_char))
... f.write("my banner test\n")
... f.write("{}\n".format(etx_char))
...
>>> quit()

Configure replace operations will reject a file with a banner unless it uses the ASCII character. Note, this likely also implies you cannot just copy-and-paste what you see on the screen.

In vim insert, you can also type <ctrl>+V, release only the V, then type C

File Operation Prompts

By default IOS will prompt for confirmation on file operations. These prompts need to be disabled before the NAPALM-ios driver performs any such operation on the device.
This can be controlled using the auto_file_prompt optional argument:

	auto_file_prompt=True (default): NAPALM will automatically add file prompt quiet to the device configuration before performing file operations,
and un-configure it again afterwards. If the device already had the command in its configuration then it will be silently removed as a result, and
this change will not show up in the output of compare_config().

	auto_file_prompt=False: Disable the above automated behaviour. The managed device must have file prompt quiet in its running-config already,
otherwise a CommandErrorException will be raised when file operations are attempted.

SCP File Transfers

The NAPALM-ios driver requires SCP to be enabled on the managed device. SCP
server functionality is disabled in IOS by default, and is configured using
ip scp server enable.

If an operation requiring a file transfer is attempted, but the necessary
configuration is not present, a CommandErrorException will be raised.

Notes

	The NAPALM-ios driver supports all Netmiko arguments as either standard arguments (hostname, username, password, timeout) or as optional_args (everything else).

NXOS

Notes on configuration replacement

Config files aren’t aren’t normal config files but special “checkpoint” files.
That’s because on NXOS the only way to replace a config without reboot is to rollback to a checkpoint (which could be a file).
These files explicitly list a lot of normally implicit config lines, some of them starting with !#.
The !# part isn’t necessary for the rollback to work, but leaving these lines out can cause erratic behavior.
See the “Known gotchas” section below.

Prerequisites

Your device must be running NXOS 6.1. The features nxapi server scp-server must be enabled.
On the device and any checkpoint file you push, you must have the lines:

feature scp-server
feature nxapi

Getting a base checkpoint file

An example of a checkpoint file can be seen in test/unit/nxos/new_good.conf.
You can get a checkpoint file representing your device’s current config by running the _get_checkpoint_file()
function in the napalm.nxos driver:

device.open()
checkpoint = device._get_checkpoint_file()
print(checkpoint)
device.close()

Known gotchas

	Leaving out a shutdown or no shutdown line will cause the switch to toggle the up/down state of an interface, depending on it’s current state.

	!#switchport trunk allowed vlan 1-4094 is required even if the switchport is in switchport mode access. However if !#switchport trunk allowed vlan 1-4094 is included with no switchport, the configuration replacement will fail.

	Vlans are listed vertically. For example vlan 1, 10, 20, 30 will fail. To succeed, you need:

vlan 1
vlan 10
vlan 20
vlan 30

Diffs

Diffs for config replacement are a list of commands that would be needed to take the device from it’s current state
to the desired config state. See test/unit/nxos/new_good.diff as an example.

Notes on configuration merging

Merges are currently implemented by simply applying the the merge config line by line.
This doesn’t use the checkpoint/rollback functionality.
As a result, merges are not atomic.

Diffs

Diffs for merges are simply the lines in the merge candidate config. Netutils [https://netutils.readthedocs.io/en/latest/] is used for creating the merge diff between the candidate and running configurations.
One caveat of using netutils diff of configurations is that the diff is performed offline and not online in the device.

Example assuming that the device config contains:

interface loopback0
 ip address 10.1.4.4/32
 ip router ospf 100 area 0.0.0.1

Then what you will get with the diff:

candidate_cfg = """
interface loopback0
 ip address 10.1.4.5/32
 ip router ospf 100 area 0.0.0.1
"""

nxos1.load_merge_candidate(config=candidate_cfg)

print(nxos1.compare_config())
interface loopback0
 ip address 10.1.4.5/32

IOS-XR (NETCONF)

Minimum IOS-XR OS Version

Only devices running IOS-XR 7.0 or later are supported by NAPALM and the IOS-XR NETCONF driver.

Device management using XML Configuration

Using iosxr_netconf and a config_encoding="xml" for NAPALM configuration operations is entirely experimental. There is a very good chance XML configurations will not work properly and that only small subsections of the configuration will be configurable using merge operations.

Device management using CLI Configuration

All configuration methods (load_merge_candidate, load_replace_candidate, get_config, compare_config) support configuration encoded in XML and CLI (unstructured) format. This can be specified by using the config_encoding optional_args argument and setting it to either cli or xml (cli is the default value).

Retrieving device environment

In IOS-XR 64-bit devices that support an administration mode, the proper operation of get_environment requires that the iosxr_netconf driver session is authenticated against a username defined in that administration mode.

Command Line Tool

NAPALM ships with a very simple cli tool so you can use napalm straight from the CLI. It’s use is quite simple and you can see the help with --help:

$ napalm --help
usage: napalm [-h] [--user USER] [--password PASSWORD] --vendor VENDOR
 [--optional_args OPTIONAL_ARGS] [--debug]
 hostname {configure,call,validate} ...

Command line tool to handle configuration on devices using NAPALM.The script
will print the diff on the screen

positional arguments:
 hostname Host where you want to deploy the configuration.

optional arguments:
 -h, --help show this help message and exit
 --user USER, -u USER User for authenticating to the host. Default: user
 running the script.
 --password PASSWORD, -p PASSWORD
 Password for authenticating to the host.If you do not
 provide a password in the CLI you will be prompted.
 --vendor VENDOR, -v VENDOR
 Host Operating System.
 --optional_args OPTIONAL_ARGS, -o OPTIONAL_ARGS
 String with comma separated key=value pairs passed via
 optional_args to the driver.
 --debug Enables debug mode; more verbosity.

actions:
 {configure,call,validate}
 configure Perform a configuration operation
 call Call a napalm method
 validate Validate configuration/state

Automate all the things!!!

You can mostly do three things:

	Configure the device (dry-run with diff supported)

	Call any method (like get_interfaces or ping)

	Validate configuration/state

Let’s see a few examples:

napalm --user vagrant --password vagrant --vendor eos --optional_args "port=12443" localhost configure new_config.txt --strategy merge --dry-run
@@ -8,7 +8,7 @@
 !
 transceiver qsfp default-mode 4x10G
 !
-hostname myhost
+hostname a-new-hostname
 !
 spanning-tree mode mstp
 !
@@ -20,6 +20,7 @@
 username vagrant privilege 15 role network-admin secret 5 1gxUZF/4Q$FoUvji7hq0HpJGxc67PJM0
 !
 interface Ethernet1
+ description "TBD"
 !
 interface Ethernet2
 !
$ napalm --user vagrant --password vagrant --vendor eos --optional_args "port=12443" localhost call get_interfaces
{
 "Ethernet2": {
 "is_enabled": true,
 "description": "",
 "last_flapped": 1502731278.4344141,
 "is_up": true,
 "mac_address": "08:00:27:3D:83:34",
 "speed": 0
 },
 "Management1": {
 "is_enabled": true,
 "description": "",
 "last_flapped": 1502731294.598835,
 "is_up": true,
 "mac_address": "08:00:27:7D:44:C1",
 "speed": 1000
 },
 "Ethernet1": {
 "is_enabled": true,
 "description": "",
 "last_flapped": 1502731278.4342606,
 "is_up": true,
 "mac_address": "08:00:27:E6:4C:E9",
 "speed": 0
 }
}
$ napalm --user vagrant --password vagrant --vendor eos --optional_args "port=12443" localhost call ping --method-kwargs "destination='127.0.0.1'"
{
 "success": {
 "packet_loss": 0,
 "rtt_stddev": 0.011,
 "rtt_min": 0.005,
 "results": [
 {
 "rtt": 0.035,
 "ip_address": "127.0.0.1"
 },
 {
 "rtt": 0.008,
 "ip_address": "127.0.0.1"
 },
 {
 "rtt": 0.006,
 "ip_address": "127.0.0.1"
 },
 {
 "rtt": 0.005,
 "ip_address": "127.0.0.1"
 },
 {
 "rtt": 0.007,
 "ip_address": "127.0.0.1"
 }
],
 "rtt_avg": 0.012,
 "rtt_max": 0.035,
 "probes_sent": 5
 }
}
$ napalm --user vagrant --password vagrant --vendor eos --optional_args "port=12443" localhost call cli --method-kwargs "commands=['show version']"
{
 "show version": "Arista vEOS\nHardware version: \nSerial number: \nSystem MAC address: 0800.2761.b6ba\n\nSoftware image version: 4.15.2.1F\nArchitecture: i386\nInternal build version: 4.15.2.1F-2759627.41521F\nInternal build ID: 8404cfa4-04c4-4008-838b-faf3f77ef6b8\n\nUptime: 19 hours and 46 minutes\nTotal memory: 1897596 kB\nFree memory: 117196 kB\n\n"
}

Debug Mode

The debugging mode is also quite useful and it’s recommended you use it to report and issue.:

$ napalm --debug --user vagrant --password vagrant --vendor eos --optional_args "port=12443" localhost configure new_config.txt --strategy merge --dry-run
2017-08-15 15:14:23,527 - napalm - DEBUG - Starting napalm's debugging tool
2017-08-15 15:14:23,527 - napalm - DEBUG - Gathering napalm packages
2017-08-15 15:14:23,541 - napalm - DEBUG - napalm-ansible==0.7.0
2017-08-15 15:14:23,542 - napalm - DEBUG - napalm==2.0.0
2017-08-15 15:14:23,542 - napalm - DEBUG - get_network_driver - Calling with args: ('eos',), {}
2017-08-15 15:14:23,551 - napalm - DEBUG - get_network_driver - Successful
2017-08-15 15:14:23,551 - napalm - DEBUG - __init__ - Calling with args: (<class 'napalm.eos.eos.EOSDriver'>, 'localhost', 'vagrant'), {'password': u'*******', 'optional_args': {u'port': 12443}, 'timeout': 60}
2017-08-15 15:14:23,551 - napalm - DEBUG - __init__ - Successful
2017-08-15 15:14:23,551 - napalm - DEBUG - pre_connection_tests - Calling with args: (<napalm.eos.eos.EOSDriver object at 0x105d58bd0>,), {}
2017-08-15 15:14:23,551 - napalm - DEBUG - open - Calling with args: (<napalm.eos.eos.EOSDriver object at 0x105d58bd0>,), {}
2017-08-15 15:14:23,586 - napalm - DEBUG - open - Successful
2017-08-15 15:14:23,586 - napalm - DEBUG - connection_tests - Calling with args: (<napalm.eos.eos.EOSDriver object at 0x105d58bd0>,), {}
2017-08-15 15:14:23,587 - napalm - DEBUG - get_facts - Calling with args: (<napalm.eos.eos.EOSDriver object at 0x105d58bd0>,), {}
2017-08-15 15:14:23,622 - napalm - DEBUG - Gathered facts:
{
 "os_version": "4.15.2.1F-2759627.41521F",
 "uptime": 71636,
 "interface_list": [
 "Ethernet1",
 "Ethernet2",
 "Management1"
],
 "vendor": "Arista",
 "serial_number": "",
 "model": "vEOS",
 "hostname": "myhost",
 "fqdn": "myhost"
}
{
 "os_version": "4.15.2.1F-2759627.41521F",
 "uptime": 71636,
 "interface_list": [
 "Ethernet1",
 "Ethernet2",
 "Management1"
],
 "vendor": "Arista",
 "serial_number": "",
 "model": "vEOS",
 "hostname": "myhost",
 "fqdn": "myhost"
}
2017-08-15 15:14:23,622 - napalm - DEBUG - get_facts - Successful
2017-08-15 15:14:23,622 - napalm - DEBUG - load_merge_candidate - Calling with args: (<napalm.eos.eos.EOSDriver object at 0x105d58bd0>,), {'filename': 'new_config.txt'}
2017-08-15 15:14:23,894 - napalm - ERROR - load_merge_candidate - Failed: Error [1000]: CLI command 3 of 5 'hostname a_new-hostname' failed: could not run command [Host name is invalid. Host name must contain only alphanumeric characters, '.' and '-'.
It must begin and end with an alphanumeric character.]

================= Traceback =================

Traceback (most recent call last):
 File "/Users/dbarroso/.virtualenvs/napalm/bin/napalm", line 11, in <module>
 load_entry_point('napalm', 'console_scripts', 'napalm')()
 File "/Users/dbarroso/workspace/napalm/napalm/napalm.base/clitools/cl_napalm.py", line 285, in main
 run_tests(args)
 File "/Users/dbarroso/workspace/napalm/napalm/napalm.base/clitools/cl_napalm.py", line 270, in run_tests
 configuration_change(device, args.config_file, args.strategy, args.dry_run)
 File "/Users/dbarroso/workspace/napalm/napalm/napalm.base/clitools/cl_napalm.py", line 224, in configuration_change
 strategy_method(device, filename=config_file)
 File "/Users/dbarroso/workspace/napalm/napalm/napalm.base/clitools/cl_napalm.py", line 27, in wrapper
 r = func(*args, **kwargs)
 File "/Users/dbarroso/workspace/napalm/napalm/napalm.base/clitools/cl_napalm.py", line 202, in call_load_merge_candidate
 return device.load_merge_candidate(*args, **kwargs)
 File "/Users/dbarroso/workspace/napalm/napalm-eos/napalm.eos/eos.py", line 176, in load_merge_candidate
 self._load_config(filename, config, False)
 File "/Users/dbarroso/workspace/napalm/napalm-eos/napalm.eos/eos.py", line 168, in _load_config
 raise MergeConfigException(e.message)
napalm.base.exceptions.MergeConfigException: Error [1000]: CLI command 3 of 5 'hostname a_new-hostname' failed: could not run command [Host name is invalid. Host name must contain only alphanumeric characters, '.' and '-'.
It must begin and end with an alphanumeric character.]

NetworkDriver

	
class napalm.base.base.NetworkDriver(hostname: str, username: str, password: str, timeout: int = 60, optional_args: Dict[KT, VT] = None)

	Bases: object

This is the base class you have to inherit from when writing your own Network Driver to
manage any device. You will, in addition, have to override all the methods specified on
this class. Make sure you follow the guidelines for every method and that you return the
correct data.

	Parameters

	
	hostname – IP or FQDN of the device you want to connect to.

	username – Username you want to use

	password – Password

	timeout – Time in seconds to wait for the device to respond.

	optional_args – Pass additional arguments to underlying driver

	Returns

	

	
cli(commands: List[str], encoding: str = 'text') → Dict[str, Union[str, Dict[str, Any]]]

	Will execute a list of commands and return the output in a dictionary format.

Example:

{
 u'show version and haiku': u'''Hostname: re0.edge01.arn01
 Model: mx480
 Junos: 13.3R6.5

 Help me, Obi-Wan
 I just saw Episode Two
 You're my only hope
 ''',
 u'show chassis fan' : u'''
 Item Status RPM Measurement
 Top Rear Fan OK 3840 Spinning at intermediate-speed
 Bottom Rear Fan OK 3840 Spinning at intermediate-speed
 Top Middle Fan OK 3900 Spinning at intermediate-speed
 Bottom Middle Fan OK 3840 Spinning at intermediate-speed
 Top Front Fan OK 3810 Spinning at intermediate-speed
 Bottom Front Fan OK 3840 Spinning at intermediate-speed'''
}

	
close() → None

	Closes the connection to the device.

	
commit_config(message: str = '', revert_in: Optional[int] = None) → None

	Commits the changes requested by the method load_replace_candidate or load_merge_candidate.

NAPALM drivers that support ‘commit confirm’ should cause self.has_pending_commit
to return True when a ‘commit confirm’ is in progress.

Implementations should raise an exception if commit_config is called multiple times while a
‘commit confirm’ is pending.

	Parameters

	
	message (str) – Optional - configuration session commit message

	revert_in (int|None) – Optional - number of seconds before the configuration will be reverted

	
compare_config() → str

	
	Returns

	A string showing the difference between the running configuration and the candidate configuration. The running_config is loaded automatically just before doing the comparison so there is no need for you to do it.

	
compliance_report(validation_file: Optional[str] = None, validation_source: Optional[str] = None) → napalm.base.models.ReportResult

	Return a compliance report.

Verify that the device complies with the given validation file and writes a compliance
report file. See https://napalm.readthedocs.io/en/latest/validate/index.html.

	Parameters

	
	validation_file – Path to the file containing compliance definition. Default is None.

	validation_source – Dictionary containing compliance rules.

	Raises

	
	ValidationException – File is not valid.

	NotImplementedError – Method not implemented.

	
confirm_commit() → None

	Confirm the changes requested via commit_config when commit_confirm=True.

Should cause self.has_pending_commit to return False when done.

	
connection_tests() → None

	This is a helper function used by the cli tool cl_napalm_show_tech. Drivers
can override this method to do some tests, show information, enable debugging, etc.
before a connection with the device has been successful.

	
discard_config() → None

	Discards the configuration loaded into the candidate.

	
get_arp_table(vrf: str = '') → List[napalm.base.models.ARPTableDict]

	
	Returns a list of dictionaries having the following set of keys:

	
	interface (string)

	mac (string)

	ip (string)

	age (float)

‘vrf’ of null-string will default to all VRFs. Specific ‘vrf’ will return the ARP table
entries for that VRFs (including potentially ‘default’ or ‘global’).

In all cases the same data structure is returned and no reference to the VRF that was used
is included in the output.

Example:

[
 {
 'interface' : 'MgmtEth0/RSP0/CPU0/0',
 'mac' : '5C:5E:AB:DA:3C:F0',
 'ip' : '172.17.17.1',
 'age' : 1454496274.84
 },
 {
 'interface' : 'MgmtEth0/RSP0/CPU0/0',
 'mac' : '5C:5E:AB:DA:3C:FF',
 'ip' : '172.17.17.2',
 'age' : 1435641582.49
 }
]

	
get_bgp_config(group: str = '', neighbor: str = '') → napalm.base.models.BPGConfigGroupDict

	Returns a dictionary containing the BGP configuration.
Can return either the whole config, either the config only for a group or neighbor.

	Parameters

	
	group – Returns the configuration of a specific BGP group.

	neighbor – Returns the configuration of a specific BGP neighbor.

Main dictionary keys represent the group name and the values represent a dictionary having
the keys below. A default group named “_” will contain information regarding global
settings and any neighbors that are not members of a group.

	type (string)

	description (string)

	apply_groups (string list)

	multihop_ttl (int)

	multipath (True/False)

	local_address (string)

	local_as (int)

	remote_as (int)

	import_policy (string)

	export_policy (string)

	remove_private_as (True/False)

	prefix_limit (dictionary)

	neighbors (dictionary)

Neighbors is a dictionary of dictionaries with the following keys:

	description (string)

	import_policy (string)

	export_policy (string)

	local_address (string)

	local_as (int)

	remote_as (int)

	authentication_key (string)

	prefix_limit (dictionary)

	route_reflector_client (True/False)

	nhs (True/False)

The inner dictionary prefix_limit has the same structure for both layers:

{
 [FAMILY_NAME]: {
 [FAMILY_TYPE]: {
 'limit': [LIMIT],
 ... other options
 }
 }
}

Example:

{
 'PEERS-GROUP-NAME':{
 'type' : u'external',
 'description' : u'Here we should have a nice description',
 'apply_groups' : [u'BGP-PREFIX-LIMIT'],
 'import_policy' : u'PUBLIC-PEER-IN',
 'export_policy' : u'PUBLIC-PEER-OUT',
 'remove_private_as' : True,
 'multipath' : True,
 'multihop_ttl' : 30,
 'neighbors' : {
 '192.168.0.1': {
 'description' : 'Facebook [CDN]',
 'prefix_limit' : {
 'inet': {
 'unicast': {
 'limit': 100,
 'teardown': {
 'threshold' : 95,
 'timeout' : 5
 }
 }
 }
 }
 'remote_as' : 32934,
 'route_reflector_client': False,
 'nhs' : True
 },
 '172.17.17.1': {
 'description' : 'Twitter [CDN]',
 'prefix_limit' : {
 'inet': {
 'unicast': {
 'limit': 500,
 'no-validate': 'IMPORT-FLOW-ROUTES'
 }
 }
 }
 'remote_as' : 13414
 'route_reflector_client': False,
 'nhs' : False
 }
 }
 }
}

	
get_bgp_neighbors() → Dict[str, napalm.base.models.BGPStateNeighborsPerVRFDict]

	Returns a dictionary of dictionaries. The keys for the first dictionary will be the vrf
(global if no vrf). The inner dictionary will contain the following data for each vrf:

	router_id

	
	peers - another dictionary of dictionaries. Outer keys are the IPs of the neighbors. The inner keys are:

	
	local_as (int)

	remote_as (int)

	remote_id - peer router id

	is_up (True/False)

	is_enabled (True/False)

	description (string)

	uptime (int in seconds)

	
	address_family (dictionary) - A dictionary of address families available for the neighbor. So far it can be ‘ipv4’ or ‘ipv6’

	
	received_prefixes (int)

	accepted_prefixes (int)

	sent_prefixes (int)

Note, if is_up is False and uptime has a positive value then this indicates the
uptime of the last active BGP session.

Example:

{
 "global": {
 "router_id": "10.0.1.1",
 "peers": {
 "10.0.0.2": {
 "local_as": 65000,
 "remote_as": 65000,
 "remote_id": "10.0.1.2",
 "is_up": True,
 "is_enabled": True,
 "description": "internal-2",
 "uptime": 4838400,
 "address_family": {
 "ipv4": {
 "sent_prefixes": 637213,
 "accepted_prefixes": 3142,
 "received_prefixes": 3142
 },
 "ipv6": {
 "sent_prefixes": 36714,
 "accepted_prefixes": 148,
 "received_prefixes": 148
 }
 }
 }
 }
 }
}

	
get_bgp_neighbors_detail(neighbor_address: str = '') → Dict[str, napalm.base.models.PeerDetailsDict]

	Returns a detailed view of the BGP neighbors as a dictionary of lists.

	Parameters

	neighbor_address – Retuns the statistics for a spcific BGP neighbor.

Returns a dictionary of dictionaries. The keys for the first dictionary will be the vrf
(global if no vrf).
The keys of the inner dictionary represent the AS number of the neighbors.
Leaf dictionaries contain the following fields:

	up (True/False)

	local_as (int)

	remote_as (int)

	router_id (string)

	local_address (string)

	routing_table (string)

	local_address_configured (True/False)

	local_port (int)

	remote_address (string)

	remote_port (int)

	multihop (True/False)

	multipath (True/False)

	remove_private_as (True/False)

	import_policy (string)

	export_policy (string)

	input_messages (int)

	output_messages (int)

	input_updates (int)

	output_updates (int)

	messages_queued_out (int)

	connection_state (string)

	previous_connection_state (string)

	last_event (string)

	suppress_4byte_as (True/False)

	local_as_prepend (True/False)

	holdtime (int)

	configured_holdtime (int)

	keepalive (int)

	configured_keepalive (int)

	active_prefix_count (int)

	received_prefix_count (int)

	accepted_prefix_count (int)

	suppressed_prefix_count (int)

	advertised_prefix_count (int)

	flap_count (int)

Example:

{
 'global': {
 8121: [
 {
 'up' : True,
 'local_as' : 13335,
 'remote_as' : 8121,
 'local_address' : u'172.101.76.1',
 'local_address_configured' : True,
 'local_port' : 179,
 'routing_table' : u'inet.0',
 'remote_address' : u'192.247.78.0',
 'remote_port' : 58380,
 'multihop' : False,
 'multipath' : True,
 'remove_private_as' : True,
 'import_policy' : u'4-NTT-TRANSIT-IN',
 'export_policy' : u'4-NTT-TRANSIT-OUT',
 'input_messages' : 123,
 'output_messages' : 13,
 'input_updates' : 123,
 'output_updates' : 5,
 'messages_queued_out' : 23,
 'connection_state' : u'Established',
 'previous_connection_state' : u'EstabSync',
 'last_event' : u'RecvKeepAlive',
 'suppress_4byte_as' : False,
 'local_as_prepend' : False,
 'holdtime' : 90,
 'configured_holdtime' : 90,
 'keepalive' : 30,
 'configured_keepalive' : 30,
 'active_prefix_count' : 132808,
 'received_prefix_count' : 566739,
 'accepted_prefix_count' : 566479,
 'suppressed_prefix_count' : 0,
 'advertised_prefix_count' : 0,
 'flap_count' : 27
 }
]
 }
}

	
get_config(retrieve: str = 'all', full: bool = False, sanitized: bool = False) → napalm.base.models.ConfigDict

	Return the configuration of a device.

	Parameters

	
	retrieve (string) – Which configuration type you want to populate, default is all of them.
The rest will be set to “”.

	full (bool) – Retrieve all the configuration. For instance, on ios, “sh run all”.

	sanitized (bool) – Remove secret data. Default: False.

	Returns

	
	running(string) - Representation of the native running configuration

	candidate(string) - Representation of the native candidate configuration. If the
device doesnt differentiate between running and startup configuration this will an
empty string

	startup(string) - Representation of the native startup configuration. If the
device doesnt differentiate between running and startup configuration this will an
empty string

	Return type

	The object returned is a dictionary with a key for each configuration store

	
get_environment() → napalm.base.models.EnvironmentDict

	Returns a dictionary where:

	
	fans is a dictionary of dictionaries where the key is the location and the values:

	
	status (True/False) - True if it’s ok, false if it’s broken

	
	temperature is a dict of dictionaries where the key is the location and the values:

	
	temperature (float) - Temperature in celsius the sensor is reporting.

	is_alert (True/False) - True if the temperature is above the alert threshold

	is_critical (True/False) - True if the temp is above the critical threshold

	
	power is a dictionary of dictionaries where the key is the PSU id and the values:

	
	status (True/False) - True if it’s ok, false if it’s broken

	capacity (float) - Capacity in W that the power supply can support

	output (float) - Watts drawn by the system

	
	cpu is a dictionary of dictionaries where the key is the ID and the values

	
	%usage

	
	memory is a dictionary with:

	
	available_ram (int) - Total amount of RAM installed in the device

	used_ram (int) - RAM in use in the device

	
get_facts() → napalm.base.models.FactsDict

	
	Returns a dictionary containing the following information:

	
	uptime - Uptime of the device in seconds.

	vendor - Manufacturer of the device.

	model - Device model.

	hostname - Hostname of the device

	fqdn - Fqdn of the device

	os_version - String with the OS version running on the device.

	serial_number - Serial number of the device

	interface_list - List of the interfaces of the device

Example:

{
'uptime': 151005.57332897186,
'vendor': u'Arista',
'os_version': u'4.14.3-2329074.gaatlantarel',
'serial_number': u'SN0123A34AS',
'model': u'vEOS',
'hostname': u'eos-router',
'fqdn': u'eos-router',
'interface_list': [u'Ethernet2', u'Management1', u'Ethernet1', u'Ethernet3']
}

	
get_firewall_policies() → Dict[str, List[napalm.base.models.FirewallPolicyDict]]

	Returns a dictionary of lists of dictionaries where the first key is an unique policy
name and the inner dictionary contains the following keys:

	position (int)

	packet_hits (int)

	byte_hits (int)

	id (text_type)

	enabled (bool)

	schedule (text_type)

	log (text_type)

	l3_src (text_type)

	l3_dst (text_type)

	service (text_type)

	src_zone (text_type)

	dst_zone (text_type)

	action (text_type)

Example:

{
 'policy_name': [{
 'position': 1,
 'packet_hits': 200,
 'byte_hits': 83883,
 'id': '230',
 'enabled': True,
 'schedule': 'Always',
 'log': 'all',
 'l3_src': 'any',
 'l3_dst': 'any',
 'service': 'HTTP',
 'src_zone': 'port2',
 'dst_zone': 'port3',
 'action': 'Permit'
 }]
}

	
get_interfaces() → Dict[str, napalm.base.models.InterfaceDict]

	Returns a dictionary of dictionaries. The keys for the first dictionary will be the interfaces in the devices. The inner dictionary will containing the following data for each interface:

	is_up (True/False)

	is_enabled (True/False)

	description (string)

	last_flapped (float in seconds)

	speed (float in Mbit)

	MTU (in Bytes)

	mac_address (string)

Example:

{
u'Management1':
 {
 'is_up': False,
 'is_enabled': False,
 'description': '',
 'last_flapped': -1.0,
 'speed': 1000.0,
 'mtu': 1500,
 'mac_address': 'FA:16:3E:57:33:61',
 },
u'Ethernet1':
 {
 'is_up': True,
 'is_enabled': True,
 'description': 'foo',
 'last_flapped': 1429978575.1554043,
 'speed': 1000.0,
 'mtu': 1500,
 'mac_address': 'FA:16:3E:57:33:62',
 },
u'Ethernet2':
 {
 'is_up': True,
 'is_enabled': True,
 'description': 'bla',
 'last_flapped': 1429978575.1555667,
 'speed': 1000.0,
 'mtu': 1500,
 'mac_address': 'FA:16:3E:57:33:63',
 },
u'Ethernet3':
 {
 'is_up': False,
 'is_enabled': True,
 'description': 'bar',
 'last_flapped': -1.0,
 'speed': 1000.0,
 'mtu': 1500,
 'mac_address': 'FA:16:3E:57:33:64',
 }
}

	
get_interfaces_counters() → Dict[str, napalm.base.models.InterfaceCounterDict]

	Returns a dictionary of dictionaries where the first key is an interface name and the
inner dictionary contains the following keys:

	tx_errors (int)

	rx_errors (int)

	tx_discards (int)

	rx_discards (int)

	tx_octets (int)

	rx_octets (int)

	tx_unicast_packets (int)

	rx_unicast_packets (int)

	tx_multicast_packets (int)

	rx_multicast_packets (int)

	tx_broadcast_packets (int)

	rx_broadcast_packets (int)

Example:

{
 u'Ethernet2': {
 'tx_multicast_packets': 699,
 'tx_discards': 0,
 'tx_octets': 88577,
 'tx_errors': 0,
 'rx_octets': 0,
 'tx_unicast_packets': 0,
 'rx_errors': 0,
 'tx_broadcast_packets': 0,
 'rx_multicast_packets': 0,
 'rx_broadcast_packets': 0,
 'rx_discards': 0,
 'rx_unicast_packets': 0
 },
 u'Management1': {
 'tx_multicast_packets': 0,
 'tx_discards': 0,
 'tx_octets': 159159,
 'tx_errors': 0,
 'rx_octets': 167644,
 'tx_unicast_packets': 1241,
 'rx_errors': 0,
 'tx_broadcast_packets': 0,
 'rx_multicast_packets': 0,
 'rx_broadcast_packets': 80,
 'rx_discards': 0,
 'rx_unicast_packets': 0
 },
 u'Ethernet1': {
 'tx_multicast_packets': 293,
 'tx_discards': 0,
 'tx_octets': 38639,
 'tx_errors': 0,
 'rx_octets': 0,
 'tx_unicast_packets': 0,
 'rx_errors': 0,
 'tx_broadcast_packets': 0,
 'rx_multicast_packets': 0,
 'rx_broadcast_packets': 0,
 'rx_discards': 0,
 'rx_unicast_packets': 0
 }
}

	
get_interfaces_ip() → Dict[str, napalm.base.models.InterfacesIPDict]

	Returns all configured IP addresses on all interfaces as a dictionary of dictionaries.
Keys of the main dictionary represent the name of the interface.
Values of the main dictionary represent are dictionaries that may consist of two keys
‘ipv4’ and ‘ipv6’ (one, both or none) which are themselves dictionaries with the IP
addresses as keys.
Each IP Address dictionary has the following keys:

	prefix_length (int)

Example:

{
 u'FastEthernet8': {
 u'ipv4': {
 u'10.66.43.169': {
 'prefix_length': 22
 }
 }
 },
 u'Loopback555': {
 u'ipv4': {
 u'192.168.1.1': {
 'prefix_length': 24
 }
 },
 u'ipv6': {
 u'1::1': {
 'prefix_length': 64
 },
 u'2001:DB8:1::1': {
 'prefix_length': 64
 },
 u'2::': {
 'prefix_length': 64
 },
 u'FE80::3': {
 'prefix_length': u'N/A'
 }
 }
 },
 u'Tunnel0': {
 u'ipv4': {
 u'10.63.100.9': {
 'prefix_length': 24
 }
 }
 }
}

	
get_ipv6_neighbors_table() → List[napalm.base.models.IPV6NeighborDict]

	Get IPv6 neighbors table information.

Return a list of dictionaries having the following set of keys:

	interface (string)

	mac (string)

	ip (string)

	age (float) in seconds

	state (string)

For example:

[
 {
 'interface' : 'MgmtEth0/RSP0/CPU0/0',
 'mac' : '5c:5e:ab:da:3c:f0',
 'ip' : '2001:db8:1:1::1',
 'age' : 1454496274.84,
 'state' : 'REACH'
 },
 {
 'interface': 'MgmtEth0/RSP0/CPU0/0',
 'mac' : '66:0e:94:96:e0:ff',
 'ip' : '2001:db8:1:1::2',
 'age' : 1435641582.49,
 'state' : 'STALE'
 }
]

	
get_lldp_neighbors() → Dict[str, List[napalm.base.models.LLDPNeighborDict]]

	
	Returns a dictionary where the keys are local ports and the value is a list of dictionaries with the following information:

	
	hostname

	port

Example:

{
u'Ethernet2':
 [
 {
 'hostname': u'junos-unittest',
 'port': u'520',
 }
],
u'Ethernet3':
 [
 {
 'hostname': u'junos-unittest',
 'port': u'522',
 }
],
u'Ethernet1':
 [
 {
 'hostname': u'junos-unittest',
 'port': u'519',
 },
 {
 'hostname': u'ios-xrv-unittest',
 'port': u'Gi0/0/0/0',
 }
],
u'Management1':
 [
 {
 'hostname': u'junos-unittest',
 'port': u'508',
 }
]
}

	
get_lldp_neighbors_detail(interface: str = '') → Dict[str, List[napalm.base.models.LLDPNeighborDetailDict]]

	Returns a detailed view of the LLDP neighbors as a dictionary
containing lists of dictionaries for each interface.

Empty entries are returned as an empty string (e.g. ‘’) or list where applicable.

Inner dictionaries contain fields:

	parent_interface (string)

	remote_port (string)

	remote_port_description (string)

	remote_chassis_id (string)

	remote_system_name (string)

	remote_system_description (string)

	
	remote_system_capab (list) with any of these values

	
	other

	repeater

	bridge

	wlan-access-point

	router

	telephone

	docsis-cable-device

	station

	remote_system_enabled_capab (list)

Example:

{
 'TenGigE0/0/0/8': [
 {
 'parent_interface': u'Bundle-Ether8',
 'remote_chassis_id': u'8c60.4f69.e96c',
 'remote_system_name': u'switch',
 'remote_port': u'Eth2/2/1',
 'remote_port_description': u'Ethernet2/2/1',
 'remote_system_description': u'''Cisco Nexus Operating System (NX-OS)
 Software 7.1(0)N1(1a)
 TAC support: http://www.cisco.com/tac
 Copyright (c) 2002-2015, Cisco Systems, Inc. All rights reserved.''',
 'remote_system_capab': ['bridge', 'repeater'],
 'remote_system_enable_capab': ['bridge']
 }
]
}

	
get_mac_address_table() → List[napalm.base.models.MACAdressTable]

	Returns a lists of dictionaries. Each dictionary represents an entry in the MAC Address
Table, having the following keys:

	mac (string)

	interface (string)

	vlan (int)

	active (boolean)

	static (boolean)

	moves (int)

	last_move (float)

However, please note that not all vendors provide all these details.
E.g.: field last_move is not available on JUNOS devices etc.

Example:

[
 {
 'mac' : '00:1C:58:29:4A:71',
 'interface' : 'Ethernet47',
 'vlan' : 100,
 'static' : False,
 'active' : True,
 'moves' : 1,
 'last_move' : 1454417742.58
 },
 {
 'mac' : '00:1C:58:29:4A:C1',
 'interface' : 'xe-1/0/1',
 'vlan' : 100,
 'static' : False,
 'active' : True,
 'moves' : 2,
 'last_move' : 1453191948.11
 },
 {
 'mac' : '00:1C:58:29:4A:C2',
 'interface' : 'ae7.900',
 'vlan' : 900,
 'static' : False,
 'active' : True,
 'moves' : None,
 'last_move' : None
 }
]

	
get_network_instances(name: str = '') → Dict[str, napalm.base.models.NetworkInstanceDict]

	Return a dictionary of network instances (VRFs) configured, including default/global

	Parameters

	name (string) –

	Returns

	
	
	name (dict)

	
	name (unicode)

	type (unicode)

	
	state (dict)

	
	route_distinguisher (unicode)

	
	interfaces (dict)

	
	
	interface (dict)

	
	interface name: (dict)

	Return type

	A dictionary of network instances in OC format

Example:

{
 u'MGMT': {
 u'name': u'MGMT',
 u'type': u'L3VRF',
 u'state': {
 u'route_distinguisher': u'123:456',
 },
 u'interfaces': {
 u'interface': {
 u'Management1': {}
 }
 }
 },
 u'default': {
 u'name': u'default',
 u'type': u'DEFAULT_INSTANCE',
 u'state': {
 u'route_distinguisher': None,
 },
 u'interfaces: {
 u'interface': {
 u'Ethernet1': {}
 u'Ethernet2': {}
 u'Ethernet3': {}
 u'Ethernet4': {}
 }
 }
 }
}

	
get_ntp_peers() → Dict[str, napalm.base.models.NTPPeerDict]

	Returns the NTP peers configuration as dictionary.
The keys of the dictionary represent the IP Addresses of the peers.
Inner dictionaries do not have yet any available keys.

Example:

{
 '192.168.0.1': {},
 '17.72.148.53': {},
 '37.187.56.220': {},
 '162.158.20.18': {}
}

	
get_ntp_servers() → Dict[str, napalm.base.models.NTPServerDict]

	Returns the NTP servers configuration as dictionary.
The keys of the dictionary represent the IP Addresses of the servers.
Inner dictionaries do not have yet any available keys.

Example:

{
 '192.168.0.1': {},
 '17.72.148.53': {},
 '37.187.56.220': {},
 '162.158.20.18': {}
}

	
get_ntp_stats() → List[napalm.base.models.NTPStats]

	Returns a list of NTP synchronization statistics.

	remote (string)

	referenceid (string)

	synchronized (True/False)

	stratum (int)

	type (string)

	when (string)

	hostpoll (int)

	reachability (int)

	delay (float)

	offset (float)

	jitter (float)

Example:

[
 {
 'remote' : u'188.114.101.4',
 'referenceid' : u'188.114.100.1',
 'synchronized' : True,
 'stratum' : 4,
 'type' : u'-',
 'when' : u'107',
 'hostpoll' : 256,
 'reachability' : 377,
 'delay' : 164.228,
 'offset' : -13.866,
 'jitter' : 2.695
 }
]

	
get_optics() → Dict[str, napalm.base.models.OpticsDict]

	Fetches the power usage on the various transceivers installed
on the switch (in dbm), and returns a view that conforms with the
openconfig model openconfig-platform-transceiver.yang

Returns a dictionary where the keys are as listed below:

	
	intf_name (unicode)

	
	
	physical_channels

	
	
	channels (list of dicts)

	
	index (int)

	
	state

	
	
	input_power

	
	instant (float)

	avg (float)

	min (float)

	max (float)

	
	output_power

	
	instant (float)

	avg (float)

	min (float)

	max (float)

	
	laser_bias_current

	
	instant (float)

	avg (float)

	min (float)

	max (float)

Example:

{
 'et1': {
 'physical_channels': {
 'channel': [
 {
 'index': 0,
 'state': {
 'input_power': {
 'instant': 0.0,
 'avg': 0.0,
 'min': 0.0,
 'max': 0.0,
 },
 'output_power': {
 'instant': 0.0,
 'avg': 0.0,
 'min': 0.0,
 'max': 0.0,
 },
 'laser_bias_current': {
 'instant': 0.0,
 'avg': 0.0,
 'min': 0.0,
 'max': 0.0,
 },
 }
 }
]
 }
 }
}

	
get_probes_config() → Dict[str, napalm.base.models.ProbeTestDict]

	Returns a dictionary with the probes configured on the device.
Probes can be either RPM on JunOS devices, either SLA on IOS-XR. Other vendors do not
support probes.
The keys of the main dictionary represent the name of the probes.
Each probe consists on multiple tests, each test name being a key in the probe dictionary.
A test has the following keys:

	probe_type (str)

	target (str)

	source (str)

	probe_count (int)

	test_interval (int)

Example:

{
 'probe1':{
 'test1': {
 'probe_type' : 'icmp-ping',
 'target' : '192.168.0.1',
 'source' : '192.168.0.2',
 'probe_count' : 13,
 'test_interval': 3
 },
 'test2': {
 'probe_type' : 'http-ping',
 'target' : '172.17.17.1',
 'source' : '192.17.17.2',
 'probe_count' : 5,
 'test_interval': 60
 }
 }
}

	
get_probes_results() → Dict[str, napalm.base.models.ProbeTestResultDict]

	Returns a dictionary with the results of the probes.
The keys of the main dictionary represent the name of the probes.
Each probe consists on multiple tests, each test name being a key in the probe dictionary.
A test has the following keys:

	target (str)

	source (str)

	probe_type (str)

	probe_count (int)

	rtt (float)

	round_trip_jitter (float)

	current_test_loss (float)

	current_test_min_delay (float)

	current_test_max_delay (float)

	current_test_avg_delay (float)

	last_test_min_delay (float)

	last_test_max_delay (float)

	last_test_avg_delay (float)

	global_test_min_delay (float)

	global_test_max_delay (float)

	global_test_avg_delay (float)

Example:

{
 'probe1': {
 'test1': {
 'last_test_min_delay' : 63.120,
 'global_test_min_delay' : 62.912,
 'current_test_avg_delay': 63.190,
 'global_test_max_delay' : 177.349,
 'current_test_max_delay': 63.302,
 'global_test_avg_delay' : 63.802,
 'last_test_avg_delay' : 63.438,
 'last_test_max_delay' : 65.356,
 'probe_type' : 'icmp-ping',
 'rtt' : 63.138,
 'current_test_loss' : 0,
 'round_trip_jitter' : -59.0,
 'target' : '192.168.0.1',
 'source' : '192.168.0.2'
 'probe_count' : 15,
 'current_test_min_delay': 63.138
 },
 'test2': {
 'last_test_min_delay' : 176.384,
 'global_test_min_delay' : 169.226,
 'current_test_avg_delay': 177.098,
 'global_test_max_delay' : 292.628,
 'current_test_max_delay': 180.055,
 'global_test_avg_delay' : 177.959,
 'last_test_avg_delay' : 177.178,
 'last_test_max_delay' : 184.671,
 'probe_type' : 'icmp-ping',
 'rtt' : 176.449,
 'current_test_loss' : 0,
 'round_trip_jitter' : -34.0,
 'target' : '172.17.17.1',
 'source' : '172.17.17.2'
 'probe_count' : 15,
 'current_test_min_delay': 176.402
 }
 }
}

	
get_route_to(destination: str = '', protocol: str = '', longer: bool = False) → Dict[str, napalm.base.models.RouteDict]

	Returns a dictionary of dictionaries containing details of all available routes to a
destination.

	Parameters

	
	destination – The destination prefix to be used when filtering the routes.

	protocol (optional) – Retrieve the routes only for a specific protocol.

	longer (optional) – Retrieve more specific routes as well.

Each inner dictionary contains the following fields:

	protocol (string)

	current_active (True/False)

	last_active (True/False)

	age (int)

	next_hop (string)

	outgoing_interface (string)

	selected_next_hop (True/False)

	preference (int)

	inactive_reason (string)

	routing_table (string)

	protocol_attributes (dictionary)

protocol_attributes is a dictionary with protocol-specific information, as follows:

	
	BGP

	
	local_as (int)

	remote_as (int)

	peer_id (string)

	as_path (string)

	communities (list)

	local_preference (int)

	preference2 (int)

	metric (int)

	metric2 (int)

	
	ISIS:

	
	level (int)

Example:

{
 "1.0.0.0/24": [
 {
 "protocol" : u"BGP",
 "inactive_reason" : u"Local Preference",
 "last_active" : False,
 "age" : 105219,
 "next_hop" : u"172.17.17.17",
 "selected_next_hop" : True,
 "preference" : 170,
 "current_active" : False,
 "outgoing_interface": u"ae9.0",
 "routing_table" : "inet.0",
 "protocol_attributes": {
 "local_as" : 13335,
 "as_path" : u"2914 8403 54113 I",
 "communities" : [
 u"2914:1234",
 u"2914:5678",
 u"8403:1717",
 u"54113:9999"
],
 "preference2" : -101,
 "remote_as" : 2914,
 "local_preference" : 100
 }
 }
]
}

	
get_snmp_information() → napalm.base.models.SNMPDict

	Returns a dict of dicts containing SNMP configuration.
Each inner dictionary contains these fields

	chassis_id (string)

	community (dictionary)

	contact (string)

	location (string)

‘community’ is a dictionary with community string specific information, as follows:

	acl (string) # acl number or name

	mode (string) # read-write (rw), read-only (ro)

Example:

{
 'chassis_id': u'Asset Tag 54670',
 'community': {
 u'private': {
 'acl': u'12',
 'mode': u'rw'
 },
 u'public': {
 'acl': u'11',
 'mode': u'ro'
 },
 u'public_named_acl': {
 'acl': u'ALLOW-SNMP-ACL',
 'mode': u'ro'
 },
 u'public_no_acl': {
 'acl': u'N/A',
 'mode': u'ro'
 }
 },
 'contact' : u'Joe Smith',
 'location': u'123 Anytown USA Rack 404'
}

	
get_users() → Dict[str, napalm.base.models.UsersDict]

	Returns a dictionary with the configured users.
The keys of the main dictionary represents the username. The values represent the details
of the user, represented by the following keys:

	level (int)

	password (str)

	sshkeys (list)

The level is an integer between 0 and 15, where 0 is the lowest access and 15 represents
full access to the device.

Example:

{
 'mircea': {
 'level': 15,
 'password': '$1$0P70xKPa$z46fewjo/10cBTckk6I/w/',
 'sshkeys': [
 'ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQC4pFn+shPwTb2yELO4L7NtQrKOJXNeCl1je l9STXVaGnRAnuc2PXl35vnWmcUq6YbUEcgUTRzzXfmelJKuVJTJIlMXii7h2xkbQp0YZIEs4P 8ipwnRBAxFfk/ZcDsN3mjep4/yjN56eorF5xs7zP9HbqbJ1dsqk1p3A/9LIL7l6YewLBCwJj6 D+fWSJ0/YW+7oH17Fk2HH+tw0L5PcWLHkwA4t60iXn16qDbIk/ze6jv2hDGdCdz7oYQeCE55C CHOHMJWYfN3jcL4s0qv8/u6Ka1FVkV7iMmro7ChThoV/5snI4Ljf2wKqgHH7TfNaCfpU0WvHA nTs8zhOrGScSrtb mircea@master-roshi'
]
 }
}

	
get_vlans() → Dict[str, napalm.base.models.VlanDict]

	
	Return structure being spit balled is as follows.

	
	
	vlan_id (int)

	
	name (text_type)

	interfaces (list)

Example:

{
 1: {
 "name": "default",
 "interfaces": ["GigabitEthernet0/0/1", "GigabitEthernet0/0/2"]
 },
 2: {
 "name": "vlan2",
 "interfaces": []
 }
}

	
has_pending_commit() → bool

	:return Boolean indicating if a commit_config that needs confirmed is in process.

	
is_alive() → napalm.base.models.AliveDict

	Returns a flag with the connection state.
Depends on the nature of API used by each driver.
The state does not reflect only on the connection status (when SSH), it must also take into
consideration other parameters, e.g.: NETCONF session might not be usable, althought the
underlying SSH session is still open etc.

	
load_merge_candidate(filename: Optional[str] = None, config: Optional[str] = None) → None

	Populates the candidate configuration. You can populate it from a file or from a string.
If you send both a filename and a string containing the configuration, the file takes
precedence.

If you use this method the existing configuration will be merged with the candidate
configuration once you commit the changes. This method will not change the configuration
by itself.

	Parameters

	
	filename – Path to the file containing the desired configuration. By default is None.

	config – String containing the desired configuration.

	Raises

	MergeConfigException – If there is an error on the configuration sent.

	
load_replace_candidate(filename: Optional[str] = None, config: Optional[str] = None) → None

	Populates the candidate configuration. You can populate it from a file or from a string.
If you send both a filename and a string containing the configuration, the file takes
precedence.

If you use this method the existing configuration will be replaced entirely by the
candidate configuration once you commit the changes. This method will not change the
configuration by itself.

	Parameters

	
	filename – Path to the file containing the desired configuration. By default is None.

	config – String containing the desired configuration.

	Raises

	ReplaceConfigException – If there is an error on the configuration sent.

	
load_template(template_name: str, template_source: Optional[str] = None, template_path: Optional[str] = None, **template_vars) → None

	Will load a templated configuration on the device.

	Parameters

	
	cls – Instance of the driver class.

	template_name – Identifies the template name.

	template_source (optional) – Custom config template rendered and loaded on device

	template_path (optional) – Absolute path to directory for the configuration templates

	template_vars – Dictionary with arguments to be used when the template is rendered.

	Raises

	
	DriverTemplateNotImplemented – No template defined for the device type.

	TemplateNotImplemented – The template specified in template_name does not exist in the default path or in the custom path if any specified using parameter template_path.

	TemplateRenderException – The template could not be rendered. Either the template source does not have the right format, either the arguments in template_vars are not properly specified.

	
open() → None

	Opens a connection to the device.

	
ping(destination: str, source: str = '', ttl: int = 255, timeout: int = 2, size: int = 100, count: int = 5, vrf: str = '', source_interface: str = '') → napalm.base.models.PingResultDict

	Executes ping on the device and returns a dictionary with the result

	Parameters

	
	destination – Host or IP Address of the destination

	source (optional) – Source address of echo request

	ttl (optional) – Maximum number of hops

	timeout (optional) – Maximum seconds to wait after sending final packet

	size (optional) – Size of request (bytes)

	count (optional) – Number of ping request to send

	vrf (optional) – Use a specific VRF to execute the ping

	source_interface (optional) – Use an IP from a source interface as source address of echo request

Output dictionary has one of following keys:

	success

	error

In case of success, inner dictionary will have the following keys:

	probes_sent (int)

	packet_loss (int)

	rtt_min (float)

	rtt_max (float)

	rtt_avg (float)

	rtt_stddev (float)

	results (list)

‘results’ is a list of dictionaries with the following keys:

	ip_address (str)

	rtt (float)

Example:

{
 'success': {
 'probes_sent': 5,
 'packet_loss': 0,
 'rtt_min': 72.158,
 'rtt_max': 72.433,
 'rtt_avg': 72.268,
 'rtt_stddev': 0.094,
 'results': [
 {
 'ip_address': u'1.1.1.1',
 'rtt': 72.248
 },
 {
 'ip_address': '2.2.2.2',
 'rtt': 72.299
 }
]
 }
}

OR

{
 'error': 'unknown host 8.8.8.8'
}

	
post_connection_tests() → None

	This is a helper function used by the cli tool cl_napalm_show_tech. Drivers
can override this method to do some tests, show information, enable debugging, etc.
after a connection with the device has been closed successfully.

	
pre_connection_tests() → None

	This is a helper function used by the cli tool cl_napalm_show_tech. Drivers
can override this method to do some tests, show information, enable debugging, etc.
before a connection with the device is attempted.

	
rollback() → None

	If changes were made, revert changes to the original state.

If commit confirm is in process, rollback changes and clear has_pending_commit.

	
traceroute(destination: str, source: str = '', ttl: int = 255, timeout: int = 2, vrf: str = '') → napalm.base.models.TracerouteResultDict

	Executes traceroute on the device and returns a dictionary with the result.

	Parameters

	
	destination – Host or IP Address of the destination

	source (optional) – Use a specific IP Address to execute the traceroute

	ttl (optional) – Maximum number of hops

	timeout (optional) – Number of seconds to wait for response

	vrf (optional) – Use a specific VRF to execute the traceroute

Output dictionary has one of the following keys:

	success

	error

In case of success, the keys of the dictionary represent the hop ID, while values are
dictionaries containing the probes results:

	rtt (float)

	ip_address (str)

	host_name (str)

Example:

{
 'success': {
 1: {
 'probes': {
 1: {
 'rtt': 1.123,
 'ip_address': u'206.223.116.21',
 'host_name': u'eqixsj-google-gige.google.com'
 },
 2: {
 'rtt': 1.9100000000000001,
 'ip_address': u'206.223.116.21',
 'host_name': u'eqixsj-google-gige.google.com'
 },
 3: {
 'rtt': 3.347,
 'ip_address': u'198.32.176.31',
 'host_name': u'core2-1-1-0.pao.net.google.com'}
 }
 },
 2: {
 'probes': {
 1: {
 'rtt': 1.586,
 'ip_address': u'209.85.241.171',
 'host_name': u'209.85.241.171'
 },
 2: {
 'rtt': 1.6300000000000001,
 'ip_address': u'209.85.241.171',
 'host_name': u'209.85.241.171'
 },
 3: {
 'rtt': 1.6480000000000001,
 'ip_address': u'209.85.241.171',
 'host_name': u'209.85.241.171'}
 }
 },
 3: {
 'probes': {
 1: {
 'rtt': 2.529,
 'ip_address': u'216.239.49.123',
 'host_name': u'216.239.49.123'},
 2: {
 'rtt': 2.474,
 'ip_address': u'209.85.255.255',
 'host_name': u'209.85.255.255'
 },
 3: {
 'rtt': 7.813,
 'ip_address': u'216.239.58.193',
 'host_name': u'216.239.58.193'}
 }
 },
 4: {
 'probes': {
 1: {
 'rtt': 1.361,
 'ip_address': u'8.8.8.8',
 'host_name': u'google-public-dns-a.google.com'
 },
 2: {
 'rtt': 1.605,
 'ip_address': u'8.8.8.8',
 'host_name': u'google-public-dns-a.google.com'
 },
 3: {
 'rtt': 0.989,
 'ip_address': u'8.8.8.8',
 'host_name': u'google-public-dns-a.google.com'}
 }
 }
 }
 }

OR

{
 'error': 'unknown host 8.8.8.8'
}

YANG

For documentation regarding YANG, please visit napalm-yang [https://napalm-yang.readthedocs.io] documentation.

napalm-logs

For documentation regarding napalm-logs, please visit the dedicated readthedocs page [https://napalm-logs.readthedocs.io].

Integrations

NAPALM can be integrated with automation frameworks such as Ansible or Salt. In order to use NAPALM with ansible you will need to install napalm-ansible.

	napalm-ansible

napalm-ansible

Below are the ansible modules which are currently available for NAPALM

	modules

modules

Below are the ansible modules which are currently available for NAPALM

	napalm_cli

	napalm_diff_yang

	napalm_get_facts

	napalm_install_config

	napalm_parse_yang

	napalm_ping

	napalm_translate_yang

	napalm_validate

napalm_cli

Executes network device CLI commands and returns response using NAPALM

Parameters

 	Parameter
 	Required
 	Default
 	Choices
 	Description

 	args
 	True
 	N/A
 	N/A
 	Keyword arguments to pass to the `cli` method

 	dev_os
 	False
 	N/A
 	N/A
 	OS of the device

 	hostname
 	False
 	N/A
 	N/A
 	IP or FQDN of the device you want to connect to

 	password
 	False
 	N/A
 	N/A
 	Password

 	provider
 	False
 	N/A
 	N/A
 	Dictionary which acts as a collection of arguments used to define the characteristics of how to connect to the device. Note - hostname, username, password and dev_os must be defined in either provider or local param Note - local param takes precedence, e.g. hostname is preferred to provider['hostname']

 	username
 	False
 	N/A
 	N/A
 	Username

Examples

- napalm_cli:

 hostname: "{{ inventory_hostname }}"

 username: "napalm"

 password: "napalm"

 dev_os: "eos"

 args:

 commands:

 - show version

 - show snmp chassis

- napalm_cli:

 provider: "{{ napalm_provider }}"

 args:

 commands:

 - show version

 - show snmp chassis

Return

 	Name
 	Description
 	Returned
 	Type
 	Sample

 	changed
 	ALWAYS RETURNS FALSE
 	always
 	bool
 	True

 	results
 	string of command output
 	always
 	dict
 	{ "show snmp chassis": "Chassis: 1234 ", "show version": "Arista vEOS Hardware version: Serial number: System MAC address: 0800.27c3.5f28\nSoftware image version: 4.17.5M Architecture: i386 Internal build version: 4.17.5M-4414219.4175M Internal build ID: d02143c6-e42b-4fc3-99b6-97063bddb6b8\nUptime: 1 hour and 21 minutes Total memory: 1893416 kB Free memory: 956488 kB\n" # noqa }

napalm_diff_yang

Create two YANG objects from dictionaries and runs mehtod

Parameters

 	Parameter
 	Required
 	Default
 	Choices
 	Description

 	first
 	True
 	N/A
 	N/A
 	Dictionary with the data to load into the first YANG object

 	models
 	True
 	N/A
 	N/A
 	List of models to parse

 	second
 	True
 	N/A
 	N/A
 	Dictionary with the data to load into the second YANG object

Examples

- napalm_diff_yang:

 first: "{{ candidate.yang_model }}"

 second: "{{ running_config.yang_model }}"

 models:

 - models.openconfig_interfaces

 register: diff

Return

 	Name
 	Description
 	Returned
 	Type
 	Sample

 	diff
 	Same output as the method napalm_yang.utils.diff
 	always
 	dict
 	{ "interfaces": { "interface": { "both": { "Port-Channel1": { "config": { "description": { "first": "blah", "second": "Asadasd" } } } } } }

napalm_get_facts

Gathers facts from a network device via the Python module napalm

Parameters

 	Parameter
 	Required
 	Default
 	Choices
 	Description

 	args
 	False
 	N/A
 	N/A
 	dictionary of kwargs arguments to pass to the filter. The outer key is the name of the getter (same as the filter)

 	dev_os
 	False
 	N/A
 	N/A
 	OS of the device

 	filter
 	False
 	N/A
 	N/A
 	A list of facts to retreive from a device and provided though C(ansible_facts) The list of facts available are maintained at: http://napalm.readthedocs.io/en/latest/support/ Note- not all getters are implemented on all supported device types

 	hostname
 	False
 	N/A
 	N/A
 	IP or FQDN of the device you want to connect to

 	ignore_notimplemented
 	False
 	N/A
 	N/A
 	Ignores NotImplementedError for filters which aren't supported by the driver. Returns invalid filters in a list called: not_implemented

 	optional_args
 	False
 	N/A
 	N/A
 	Dictionary of additional arguments passed to underlying driver

 	password
 	False
 	N/A
 	N/A
 	Password

 	provider
 	False
 	N/A
 	N/A
 	Dictionary which acts as a collection of arguments used to define the characteristics of how to connect to the device. Note - hostname, username, password and dev_os must be defined in either provider or local param Note - local param takes precedence, e.g. hostname is preferred to provider['hostname']

 	timeout
 	False
 	N/A
 	N/A
 	Time in seconds to wait for the device to respond

 	username
 	False
 	N/A
 	N/A
 	Username

Examples

- name: get facts from device

 napalm_get_facts:

 hostname: '{{ inventory_hostname }}'

 username: '{{ user }}'

 dev_os: '{{ os }}'

 password: '{{ passwd }}'

 filter: ['facts']

 register: result

- name: print data

 debug:

 var: result

- name: Getters

 napalm_get_facts:

 provider: "{{ ios_provider }}"

 filter:

 - "lldp_neighbors_detail"

 - "interfaces"

- name: get facts from device

 napalm_get_facts:

 hostname: "{{ host }}"

 username: "{{ user }}"

 dev_os: "{{ os }}"

 password: "{{ password }}"

 optional_args:

 port: "{{ port }}"

 filter: ['facts', 'route_to', 'interfaces']

 args:

 route_to:

 protocol: static

 destination: 8.8.8.8

Return

 	Name
 	Description
 	Returned
 	Type
 	Sample

 	changed
 	whether the command has been executed on the device
 	always
 	bool
 	True

 	ansible_facts
 	Facts gathered on the device provided via C(ansible_facts)
 	certain keys are returned depending on filter
 	dict
 	

napalm_install_config

This library will take the configuration from a file and load it into a device running any OS supported by napalm. The old configuration will be replaced or merged with the new one.

Parameters

 	Parameter
 	Required
 	Default
 	Choices
 	Description

 	archive_file
 	False
 	N/A
 	N/A
 	File to store backup of running-configuration from device. Configuration will not be retrieved if not set.

 	candidate_file
 	False
 	N/A
 	N/A
 	Store a backup of candidate config from device prior to a commit.

 	commit_changes
 	True
 	N/A
 	N/A
 	If set to True the configuration will be actually merged or replaced. If the set to False, we will not apply the changes, just check and report the diff

 	config
 	False
 	N/A
 	N/A
 	Configuration to load. Either config or config_file is needed.

 	config_file
 	False
 	N/A
 	N/A
 	Path to the file to load the configuration from. Either config or config_file is needed.

 	dev_os
 	False
 	N/A
 	N/A
 	OS of the device

 	diff_file
 	False
 	N/A
 	N/A
 	A path to the file where we store the "diff" between the running configuration and the new configuration. If not set the diff between configurations will not be saved.

 	get_diffs
 	False
 	N/A
 	N/A
 	Set to False to not have any diffs generated. Useful if platform does not support commands being used to generate diffs. Note- By default diffs are generated even if the diff_file param is not set.

 	hostname
 	False
 	N/A
 	N/A
 	IP or FQDN of the device you want to connect to

 	optional_args
 	False
 	N/A
 	N/A
 	Dictionary of additional arguments passed to underlying driver

 	password
 	False
 	N/A
 	N/A
 	Password

 	provider
 	False
 	N/A
 	N/A
 	Dictionary which acts as a collection of arguments used to define the characteristics of how to connect to the device. Connection arguments can be inferred from inventory and CLI arguments or specified in a provider or specified individually.

 	replace_config
 	False
 	N/A
 	N/A
 	If set to True, the entire configuration on the device will be replaced during the commit. If set to False, we will merge the new config with the existing one.

 	timeout
 	False
 	N/A
 	N/A
 	Time in seconds to wait for the device to respond

 	username
 	False
 	N/A
 	N/A
 	Username

Examples

- assemble:

 src: '../compiled/{{ inventory_hostname }}/'

 dest: '../compiled/{{ inventory_hostname }}/running.conf'

- name: Install Config and save diff

 napalm_install_config:

 hostname: '{{ inventory_hostname }}'

 username: '{{ user }}'

 dev_os: '{{ os }}'

 password: '{{ passwd }}'

 config_file: '../compiled/{{ inventory_hostname }}/running.conf'

 commit_changes: '{{ commit_changes }}'

 replace_config: '{{ replace_config }}'

 get_diffs: True

 diff_file: '../compiled/{{ inventory_hostname }}/diff'

- name: Install Config using Provider

 napalm_install_config:

 provider: "{{ ios_provider }}"

 config_file: '../compiled/{{ inventory_hostname }}/running.conf'

 commit_changes: '{{ commit_changes }}'

 replace_config: '{{ replace_config }}'

 get_diffs: True

 diff_file: '../compiled/{{ inventory_hostname }}/diff'

Return

 	Name
 	Description
 	Returned
 	Type
 	Sample

 	changed
 	whether the config on the device was changed
 	always
 	bool
 	True

 	diff
 	diff of the change
 	always
 	dict
 	{'prepared': '[edit system] - host-name lab-testing; + host-name lab;'}

napalm_parse_yang

Parse configuration/state from a file or device and returns a dict that

Parameters

 	Parameter
 	Required
 	Default
 	Choices
 	Description

 	dev_os
 	False
 	N/A
 	N/A
 	OS of the device

 	file_path
 	False
 	N/A
 	N/A
 	Path to a file to load native config/state from. Note: Either file_path or data to connect to a device must be provided. Note: file_path takes precedence over a live device

 	hostname
 	False
 	N/A
 	N/A
 	IP or FQDN of the device you want to connect to

 	mode
 	True
 	N/A
 	N/A
 	Whether to parse config/state or both. Note: `both` is not supported in combination with `file_path`.

 	models
 	True
 	N/A
 	N/A
 	A list that should match the SUPPORTED_MODELS in napalm-yang

 	optional_args
 	False
 	N/A
 	N/A
 	Dictionary of additional arguments passed to underlying driver

 	password
 	False
 	N/A
 	N/A
 	Password

 	profiles
 	False
 	N/A
 	N/A
 	A list profiles

 	provider
 	False
 	N/A
 	N/A
 	Dictionary which acts as a collection of arguments used to define the characteristics of how to connect to the device. Note - hostname, username, password and dev_os must be defined in either provider or local param if we want to parse from a device Note - local param takes precedence, e.g. hostname is preferred to provider['hostname']

 	timeout
 	False
 	N/A
 	N/A
 	Time in seconds to wait for the device to respond

 	username
 	False
 	N/A
 	N/A
 	Username

Examples

- name: Parse from device

 napalm_parse_yang:

 hostname: '{{ inventory_hostname }}'

 username: '{{ user }}'

 dev_os: '{{ os }}'

 password: '{{ passwd }}'

 mode: "config"

 profiles: ["eos"]

 models:

 - models.openconfig_interfaces

 register: running

- name: Parse from file

 napalm_parse_yang:

 file_path: "eos.config"

 mode: "config"

 profiles: ["eos"]

 models:

 - models.openconfig_interfaces

 register: config

Return

 	Name
 	Description
 	Returned
 	Type
 	Sample

 	changed
 	Dict the representes a valid YANG object
 	always
 	dict
 	{'interfaces': {'interface':'Et1': {...}, ... }}

napalm_ping

This module logs into the device, issues a ping request, and returns the response

Parameters

 	Parameter
 	Required
 	Default
 	Choices
 	Description

 	count
 	False
 	N/A
 	N/A
 	N

 	destination
 	True
 	N/A
 	N/A
 	H

 	dev_os
 	False
 	N/A
 	N/A
 	OS of the device

 	hostname
 	False
 	N/A
 	N/A
 	IP or FQDN of the device you want to connect to

 	optional_args
 	False
 	N/A
 	N/A
 	Dictionary of additional arguments passed to underlying driver

 	password
 	False
 	N/A
 	N/A
 	Password

 	ping_timeout
 	False
 	N/A
 	N/A
 	M

 	provider
 	False
 	N/A
 	N/A
 	Dictionary which acts as a collection of arguments used to define the characteristics of how to connect to the device. Note - hostname, username, password and dev_os must be defined in either provider or local param Note - local param takes precedence, e.g. hostname is preferred to provider['hostname']

 	size
 	False
 	N/A
 	N/A
 	S

 	source
 	False
 	N/A
 	N/A
 	S

 	source_interface
 	False
 	N/A
 	N/A
 	i

 	timeout
 	False
 	N/A
 	N/A
 	Time in seconds to wait for the device to respond

 	ttl
 	False
 	N/A
 	N/A
 	M

 	username
 	False
 	N/A
 	N/A
 	Username

 	vrf
 	False
 	N/A
 	N/A
 	v

Examples

- napalm_ping:

 hostname: "{{ inventory_hostname }}"

 username: "napalm"

 password: "napalm"

 dev_os: "eos"

 destination: 10.0.0.5

 vrf: MANAGEMENT

 count: 2

- napalm_ping:

 provider: "{{ napalm_provider }}"

 destination: 8.8.8.8

 count: 2

Return

 	Name
 	Description
 	Returned
 	Type
 	Sample

 	changed
 	ALWAYS RETURNS FALSE
 	always
 	bool
 	True

 	results
 	structure response data of ping
 	always
 	dict
 	{"success": {"packet_loss": 0, "probes_sent": 2, "results": [{"ip_address": "10.0.0.5:", "rtt": 1.71}, {"ip_address": "10.0.0.5:", "rtt": 0.733}], "rtt_avg": 1.225, "rtt_max": 1.718, "rtt_min": 0.733, "rtt_stddev": 0.493}}

 	alt_results
 	Example results key on failure
 	always
 	dict
 	{"error": "connect: Network is unreachable "}}

napalm_translate_yang

Load a YANG object from a dict and translates the object to native

Parameters

 	Parameter
 	Required
 	Default
 	Choices
 	Description

 	data
 	True
 	N/A
 	N/A
 	dict to load into the YANG object

 	merge
 	False
 	N/A
 	N/A
 	When translating config, merge resulting config here

 	models
 	True
 	N/A
 	N/A
 	List of models to parse

 	profiles
 	True
 	N/A
 	N/A
 	List of profiles to use to translate the object

 	replace
 	False
 	N/A
 	N/A
 	When translating config, replace resulting config here

Examples

- name: "Translate config"

 napalm_translate_yang:

 data: "{{ interfaces.yang_model }}"

 profiles: ["eos"]

 models:

 - models.openconfig_interfaces

 register: config

Return

 	Name
 	Description
 	Returned
 	Type
 	Sample

 	config
 	Native configuration
 	always
 	string
 	interface Ethernet2 no switchport ip address 192.168.0.1/24

napalm_validate

Performs deployment validation via napalm.

Parameters

 	Parameter
 	Required
 	Default
 	Choices
 	Description

 	data
 	False
 	N/A
 	N/A
 	dict to load into the YANG object

 	dev_os
 	False
 	N/A
 	N/A
 	OS of the device.

 	hostname
 	False
 	N/A
 	N/A
 	IP or FQDN of the device you want to connect to.

 	models
 	True
 	N/A
 	N/A
 	List of models to parse Note - data to connect to the device is not necessary when using YANG models

 	optional_args
 	False
 	N/A
 	N/A
 	Dictionary of additional arguments passed to underlying driver.

 	password
 	False
 	N/A
 	N/A
 	Password.

 	provider
 	False
 	N/A
 	N/A
 	Dictionary which acts as a collection of arguments used to define the characteristics of how to connect to the device. Note - hostname, username, password and dev_os must be defined in either provider or local param Note - local param takes precedence, e.g. hostname is preferred to provider['hostname']

 	timeout
 	False
 	N/A
 	N/A
 	Time in seconds to wait for the device to respond.

 	username
 	False
 	N/A
 	N/A
 	Username.

 	validation_file
 	True
 	N/A
 	N/A
 	YAML Validation file containing resources desired states.

Examples

- name: GET VALIDATION REPORT

 napalm_validate:

 username: "{{ un }}"

 password: "{{ pwd }}"

 hostname: "{{ inventory_hostname }}"

 dev_os: "{{ dev_os }}"

 validation_file: validate.yml

- name: GET VALIDATION REPORT USING PROVIDER

 napalm_validate:

 provider: "{{ ios_provider }}"

 validation_file: validate.yml

USING YANG

- name: Let's gather state of interfaces

 napalm_parse_yang:

 dev_os: "{{ dev_os }}"

 hostname: "{{ hostname }}"

 username: "{{ username }}"

 password: "{{ password }}"

 mode: "state"

 optional_args:

 port: "{{ port }}"

 models:

 - models.openconfig_interfaces

 register: interfaces

- name: Check all interfaces are up

 napalm_validate:

 data: "{{ interfaces.yang_model }}"

 models:

 - models.openconfig_interfaces

 validation_file: "validate.yaml"

 register: report

Return

 	Name
 	Description
 	Returned
 	Type
 	Sample

 	changed
 	check to see if a change was made on the device.
 	always
 	bool
 	False

 	compliance_report
 	validation report obtained via napalm.
 	always
 	dict
 	

Contributing

Contributing is very easy and you can do it many ways; documentation, bugfixes, new features, etc. Any sort of contribution is useful.

How to Contribute

In order to speed up things we recommend you to follow the following rules when doing certain types of contributions. If something is not clear don’t worry, just ask or send your contribution back and we will help you.

New Feature

New features are going to mostly be either a new method that is not yet defined or implementing a method already defined for a particular driver.

Proposing a new method

The best way to propose a new method is as follows to send a PR with the proposed method. That will probably spark some debate around the format. The PR will not only have to include the proposed method but some testing.

In addition, before merging we will want an implementation for any driver of your choice.

	For example:

	
	get_config proposal [https://github.com/napalm-automation/napalm/pull/69/files] - That particular example had an issue that some had raised as a reference but that’s not mandatory. You can create an issue first but that’s optional.

	get_config implementation for EOS [https://github.com/napalm-automation/napalm-eos/pull/38/files] - Before the PR was merged an implementation was provided as a proof of concept. This is mandatory. This PRs doesn’t have to arrive at the same time as the previous one but it will be required. Note that the rules for “Implementing an already defined method” apply to this PR.

Implementing an already defined method

Adding an already defined method to a driver has three very simple steps:

	Implement the code.

	Add necessary mocked data.

	Enable the test and ensure it passes (this step is no longer needed so ignore the .travis.yaml change on the example below).

Again get_config implementation for EOS [https://github.com/napalm-automation/napalm-eos/pull/38/files] is a good example.

Bugfixes

If you found a bug and know how to fix just contribute the bugfix. It might be interesting to provide a test to make sure we don’t introduce the bug back in the future but this step is optional.

Documentation

The documentation is built using Sphinx [http://www.sphinx-doc.org/en/master/] and hosted on Read the Docs. The docs
are kept in the docs/ directory at the top of the source tree.

To make changes, it is preferable to set up a python virtual environment [https://packaging.python.org/guides/installing-using-pip-and-virtualenv/]
called env and activate it.

Next, install the documentation dependencies using pip:

pip install -r docs/requirements.txt

Make your changes and then check them for correctness by building them locally:

in the docs directory
make html

Tip

If it is a simple change to a single page, you can use the “Edit on
GitHub” button in the upper right hand corner of the page in question.

Proposing a new driver

This is a more complex process but completely doable. You can find more information here [https://github.com/napalm-automation/napalm-skeleton].

Please check Community Drivers to understand the process.

	NAPALM Core Developers

	Community Drivers

NAPALM Core Developers

NAPALM core developers have the responsibility to maintain the
Supported Devices, hereby including:

	Identify and fix bugs

	Add new features and enhancements

	Ensure an uniform API

	Triage Issues

	Review and eventually Pull Requests

	Continuously improve the documentation

	Grant access to volunteers that propose new Community Drivers

	Provide a set of tools used in the core drivers to test and generate documentation to developers willing to write and maintain extra drivers

Who can be a core developer?

Anyone that is (git) committed to the project, proves skills to maintain a
driver, and continuously identifies and fixes issues, or any applicable of the
above. We are always looking into statistics and considering new members.

Community Drivers

In addition to the core drivers, maintained by the NAPALM Core Developers,
the community can always provide additional drivers. We welcome any submission,
and new drivers will be hosted under the
napalm-automation-community [https://github.com/napalm-automation-community] on
GitHub. They can be seen as plugins for the base NAPALM framework, which is
why each driver is maintained under its own repository.

Once a new driver is added under the named organisation, the user proposing it
takes the entire responsibility to maintain. That includes:

	Documentation

	Fix bugs

	Triage and manage issues

	Review and merge Pull Requests

	API compatibility with the core drivers

While everything is a best-effort of the volunteer, we highly encourage the
community to avoid submitting drivers they are unable to maintain. We understand
that personal and professional situations can change and we are not asking for
an ever-lasting commitment but there should be some willingness to take some
initial responsibility over it.

The core developers will provide you the tools and the methodologies to
create a new driver, together with the associated documentation.

If there is high demand for a specific driver, and its maintainer proves they
are able to commit to a continuous work on the long run, the driver can
be promoted to be included into the core.

Development

Some useful information for development purposes.

	Testing Framework

	Testing Matrix

	Triaging Issues and Pull Requests

Testing Framework

As NAPALM consists of multiple drivers and all of them have to provide similar functionality, we have developed a testing framework to provide a consistent test suite for all the drivers.

Features

The testing framework has the following features:

	Same tests across all vendors. Tests defined in napalm.base/test/getters.py are shared across all drivers.

	Multiple test cases per test.

	Target of the test can be configured with environmental variables.

	Expected output is compared against the actual output of the test result.

	NotImplemented methods are skipped automatically.

Using the testing framework

To use the testing framework you have to implement two files in addition to the mocked data:

	test/unit/test_getters.py - Generic file with the same content as this file test_getters.py [https://github.com/napalm-automation/napalm-eos/blob/a2fc2cf6a98b0851efe4cba907086191b8f1df02/test/unit/test_getters.py]

	test/unit/conftest.py - Code specific to each driver with instructions on how to fake the driver. For example, conftest.py [https://github.com/napalm-automation/napalm-eos/blob/a2fc2cf6a98b0851efe4cba907086191b8f1df02/test/unit/conftest.py]

Multiple test cases

To create test cases for your driver you have to create a folder named test/unit/mocked_data/$name_of_test_function/$name_of_test_case. For example:

	test/unit/mocked_data/test_get_bgp_neighbors/no_peers/

	test/unit/mocked_data/test_get_bgp_neighbors/lots_of_peers/

Each folder will have to contain it’s own mocked data and expected result.

Target

By default, the tests are going to be run against mocked data but you can change that behavior with the following environmental variables:

	NAPALM_TEST_MOCK - 1 (default) for mocked data and 0 for connecting to a device.

	NAPALM_HOSTNAME

	NAPALM_USERNAME

	NAPALM_PASSWORD

	NAPALM_OPTIONAL_ARGS

Mocking the open method

To mock data needed to connect to the device, ie, needed by the open method, just put the data in the folder test/unit/mocked_data/

Examples

Multiple test cases:

(napalm) ➜ napalm-eos git:(test_framework) ✗ ls test/unit/mocked_data/test_get_bgp_neighbors
lots_of_peers no_peers normal
(napalm) ➜ napalm-eos git:(test_framework) ✗ py.test test/unit/test_getters.py::TestGetter::test_get_bgp_neighbors
...
test/unit/test_getters.py::TestGetter::test_get_bgp_neighbors[lots_of_peers] <- ../napalm/napalm.base/test/getters.py PASSED
test/unit/test_getters.py::TestGetter::test_get_bgp_neighbors[no_peers] <- ../napalm/napalm.base/test/getters.py PASSED
test/unit/test_getters.py::TestGetter::test_get_bgp_neighbors[normal] <- ../napalm/napalm.base/test/getters.py PASSED

Missing test cases:

(napalm) ➜ napalm-eos git:(test_framework) ✗ ls test/unit/mocked_data/test_get_bgp_neighbors
ls: test/unit/mocked_data/test_get_bgp_neighbors: No such file or directory
(napalm) ➜ napalm-eos git:(test_framework) ✗ py.test test/unit/test_getters.py::TestGetter::test_get_bgp_neighbors
...
test/unit/test_getters.py::TestGetter::test_get_bgp_neighbors[no_test_case_found] <- ../napalm/napalm.base/test/getters.py FAILED

=== FAILURES ==
___________________________________ TestGetter.test_get_bgp_neighbors[no_test_case_found] ___________________________________

cls = <test_getters.TestGetter instance at 0x10ed5eb90>, test_case = 'no_test_case_found'

 @functools.wraps(func)
 def wrapper(cls, test_case):
 cls.device.device.current_test = func.__name__
 cls.device.device.current_test_case = test_case

 try:
 # This is an ugly, ugly, ugly hack because some python objects don't load
 # as expected. For example, dicts where integers are strings
 result = json.loads(json.dumps(func(cls)))
 except IOError:
 if test_case == "no_test_case_found":
> pytest.fail("No test case for '{}' found".format(func.__name__))
E Failed: No test case for 'test_get_bgp_neighbors' found

../napalm/napalm.base/test/getters.py:64: Failed
=== 1 failed in 0.12 seconds ==

Method not implemented:

(napalm) ➜ napalm-eos git:(test_framework) ✗ py.test test/unit/test_getters.py::TestGetter::test_get_probes_config
...
test/unit/test_getters.py::TestGetter::test_get_probes_config[no_test_case_found] <- ../napalm/napalm.base/test/getters.py SKIPPED

=== 1 skipped in 0.09 seconds ===

Testing Matrix

NAPALM leverages [Github Actions](https://docs.github.com/en/actions) to test and lint code on commits and pull requests.
If you want to test prior to opening a pull request, you can use [nektos/act](https://github.com/nektos/act) and Docker to locally run the tests

$ act -j std_tests
[build/std_tests-4] 🚀 Start image=catthehacker/ubuntu:act-latest
[build/std_tests-3] 🚀 Start image=catthehacker/ubuntu:act-latest
[build/std_tests-1] 🚀 Start image=catthehacker/ubuntu:act-latest
[build/std_tests-2] 🚀 Start image=catthehacker/ubuntu:act-latest
[build/std_tests-5] 🚀 Start image=catthehacker/ubuntu:act-latest
[build/std_tests-4] 🐳 docker pull image=catthehacker/ubuntu:act-latest platform= username= forcePull=true
[build/std_tests-1] 🐳 docker pull image=catthehacker/ubuntu:act-latest platform= username= forcePull=true
[build/std_tests-3] 🐳 docker pull image=catthehacker/ubuntu:act-latest platform= username= forcePull=true
[build/std_tests-5] 🐳 docker pull image=catthehacker/ubuntu:act-latest platform= username= forcePull=true
[build/std_tests-2] 🐳 docker pull image=catthehacker/ubuntu:act-latest platform= username= forcePull=true

...

| ---
| TOTAL 9258 1836 80%
|
| ================= 619 passed, 80 skipped, 3 warnings in 19.97s =================
[build/std_tests-5] ✅ Success - Main Run Tests
[build/std_tests-5] ⭐ Run Post Setup Python 3.11
[build/std_tests-5] 🐳 docker exec cmd=[node /var/run/act/actions/actions-setup-python@v2/dist/cache-save/index.js] user= workdir=
[build/std_tests-5] ✅ Success - Post Setup Python 3.11
[build/std_tests-5] 🏁 Job succeeded

Triaging Issues and Pull Requests

Note

This document serves mainly as a reference for the NAPALM maintainers,
but the users are equally welcome to read this document and understand our
process, and eventually suggest improvements.

We triage Issues and Pull Requests (PR) using GitHub features only:

	Labels

	Milestone

	Projects

Labels

Driver labels

Each platform supported by NAPALM has associated a label, e.g., junos, eos,
ios, iosxr_netconf, iosxr, vyos, etc. It is mandatory that the maintainer to apply
one or more of these labels.

api change

If the Issue would imply a change in the API, or the PR introduces changes in
the API. By API change we refer to changes in the getters output structure,
methods signature, or any core changes that must be uniformly introduced across
all the drivers.

awesome

When someone adds or proposes something really awesome.

base

When base components are affected, e.g., get_network_driver, the validate
functionality, or the testing framework.

blocked

Added in case we block the PR temporarly, or an Issue is currently blocked by
other internal or external factors (PRs pending to be merged, other bugs to be
solved a priori, etc.)

bug

Whenever the behaviour reported in the Issue is different than it should, or the
PR kills a bug.

cannot reproduce

This refers to Issues only, and it is added when the maintainer(s) cannot
reproduce the behaviour reported.

core

When any core components (drivers) are affected.

deprecation

Added only to PRs, when a API deprecation is introduced.

documentation

Can be added to both Issues and PRs, anything related to the documentation.

duplicate

Applicable to Issues only, to be added before closing a duplicate.

feature

When a new feature is introduced, or the user requests a new feature.

good first issue

While we want to encourage the community to contribute more and more frequent,
many engineers are still afraid of complex tasks. This label marks simple fixes
that new contributors can address. It is recommended that this label to be
accompanied by an explanation and a pointer for the new contributors.

help wanted

This marks an Issue were we ask the community for help, or we need more details
on a particular topic (e.g., outputs from different platforms, explanation, etc.)
from any volunteer from the community.

Once we have all the details required, the maintainer has to remove this label
even though it does not start working on it immediately.

high severity

Whenever a bug affects severely one or more features, making
it basically unusable.

info needed

We add this label when we need more details and further explanation from the user
that reports an Issue. Once we received everything needed, we can remove that
label.

investigation

We need to investigate the problem further.

new driver

When we discuss the possibility to add a new core driver.

new method

When we discuss the possibility or implement a new method to one or more drivers.
The method does not necessarily need to be a completely new one to NAPALM.

vendor bug

When the bug is casued by a vendor stupidity.

Milestone

The milestones are used to group the Issues and the Pull Requests from a
different angle:

Version

The Issue will be solved, or the PR will be included in this release.

APPROVED

It means that we accept the Issue or the PR, but we don’t have a schedule yet
for when the Issue will be solved, or the PR will be included in a release.

BLOCKED

This groups the Issues or the PRs we could not accept for the reasons marked
using the labels.

DISCUSSION

The Issue or the PR needs further discussion.

Projects

Any major change that may consist on several Pull Requests should be groupped
into a GitHub Project.

Hackathons

	Hackathon 2016

Hackathon 2016

Welcome to the very first NAPALM hackathon ever. What you are about to see is a bunch of people doing the unthinkable; writing code to manage the network!!!

Important

I love the smell of automation in the morning.

Introduction

During a weekend we will gather online to hack around napalm, fix existing issues, clean the codebase or just do whatever we want.

Quick Information

	Date

	16, 17 and 18th of September

	Location

	Here for more information

	Slack

	#napalm-hackathon-2016 in networkToCode [https://networktocode.herokuapp.com/]

	Live Feed

	Youtube Live [https://www.youtube.com/channel/UCkjR7tuducm2jxFsWv0dQBQ/live]

	Recordings

	Youtube [https://www.youtube.com/playlist?list=PLTUN_ROR5c9jUUHk0Du0Yy6a6lf9PaUet]

Information

	Agenda

	Location
	IRL Gatherings

	Known gatherings

	Participating
	Before the event

	During the event

	Mentors

	Volunteering

	Presentations

Agenda

Important

All dates and times are in UTC

Location

The hackathon will be held online. We will use slack as the main communications channel, github to coordinate the work and hangouts for live presentations, which will be posted online on a youtube channel within the hour.

Check this link for more information regarding the slack channel, hangouts, youtube, etc..

IRL Gatherings

Apparently there is something called real life and people like to gather in groups, shocking, isn’t it? We will gather in some locations just for the sake of feeling the warmth of other human beings and probably have beer after a long day of hacking. This is completely optional and unofficial, although, if you want to host a physical meetup I will be happy to announce it here.

Known gatherings

	London, UK:

CloudFlare, 25 Lavington St, London SE1 0NZ
Contact: Mircea, @mirceaulinic (slack), tel: +447427735256

	New York, NY, United States:

Network to Code (WeWork location), 315 W. 36th, NY
Contact: Jason Edelman (jason@networktocode.com) or jedelman8 on Slack and Twitter

	San Francisco, CA, United states:

Contact ktbyers@twb-tech.com for details

	Krakow, Poland:

Contact elisa@bigwaveit.org for details

Participating

Before the event

Feel free to navigate all the repos on the napalm automation [https://github.com/napalm-automation] organization and find issues you might want to work on.

	If you find any feel free to comment on the issue to let the organizers know.

	If you don’t and you know what you would like to work on, please, create an issue with the description of what you want to achieve.

	If you want to participate and you don’t know what to do, feel free to ask on the slack channel. It is already available so go there and ask.

During the event

	Make sure you are on slack. We will use that as our main communications channel. We will make all the announcements there and we will notify you there if we plan to make some announcement on the hangout.

	If you can’t attend the live videos don’t sweat. They will be published on YouTube as soon as they are done so you don’t miss anything.

	If you are in New Zealand and think you live on a strange timezone and, thus, you can’t participate, you are wrong. GitHub is great for asynchronous communications and I am sure there will always be someone around on slack to help you through any problem you might encounter, to help someone yourself or simply to wind up for a second and just talk about any random topic you want.

Mentors

Important

All levels of expertise are welcome so if you are new to github, python, napalm or even to networking, don’t let that be on the way. We have some mentors to help you and plenty of tasks to get you started with python, github, and various other tools for testing code, making it look pretty, etc. So if you are looking for some free training this might be a good way to get it ;)

The community in networkToCode is pretty much great so if you have any problem just post it on the slack channel. Feel free to also ping any of the mentors if you didn’t get any satisfactory answer.

Mentors’ slack handles are:

	dbarroso

	mirceaulinic

	ggabriele

Volunteering

Do you want to help out? Please, do it. We need mentors. If you know how to work with git, python, napalm, how to record a google hangout, you want to organize a physical gathering or just correct my spleling, please, ping dbarroso on slack.

Presentations

	NAPALM Introduction (Slides) [https://www.dravetech.com/presos/napalm_hackathon_intro.html]

	NAPALM Kickoff (Slides) [https://www.dravetech.com/presos/napalm_hackathon_kickoff.html]

Index

 C
 | D
 | G
 | H
 | I
 | L
 | N
 | O
 | P
 | R
 | T

C

 	
 	cli() (napalm.base.base.NetworkDriver method)

 	close() (napalm.base.base.NetworkDriver method)

 	commit_config() (napalm.base.base.NetworkDriver method)

 	
 	compare_config() (napalm.base.base.NetworkDriver method)

 	compliance_report() (napalm.base.base.NetworkDriver method)

 	confirm_commit() (napalm.base.base.NetworkDriver method)

 	connection_tests() (napalm.base.base.NetworkDriver method)

D

 	
 	discard_config() (napalm.base.base.NetworkDriver method)

G

 	
 	get_arp_table() (napalm.base.base.NetworkDriver method)

 	get_bgp_config() (napalm.base.base.NetworkDriver method)

 	get_bgp_neighbors() (napalm.base.base.NetworkDriver method)

 	get_bgp_neighbors_detail() (napalm.base.base.NetworkDriver method)

 	get_config() (napalm.base.base.NetworkDriver method)

 	get_environment() (napalm.base.base.NetworkDriver method)

 	get_facts() (napalm.base.base.NetworkDriver method)

 	get_firewall_policies() (napalm.base.base.NetworkDriver method)

 	get_interfaces() (napalm.base.base.NetworkDriver method)

 	get_interfaces_counters() (napalm.base.base.NetworkDriver method)

 	get_interfaces_ip() (napalm.base.base.NetworkDriver method)

 	get_ipv6_neighbors_table() (napalm.base.base.NetworkDriver method)

 	get_lldp_neighbors() (napalm.base.base.NetworkDriver method)

 	
 	get_lldp_neighbors_detail() (napalm.base.base.NetworkDriver method)

 	get_mac_address_table() (napalm.base.base.NetworkDriver method)

 	get_network_instances() (napalm.base.base.NetworkDriver method)

 	get_ntp_peers() (napalm.base.base.NetworkDriver method)

 	get_ntp_servers() (napalm.base.base.NetworkDriver method)

 	get_ntp_stats() (napalm.base.base.NetworkDriver method)

 	get_optics() (napalm.base.base.NetworkDriver method)

 	get_probes_config() (napalm.base.base.NetworkDriver method)

 	get_probes_results() (napalm.base.base.NetworkDriver method)

 	get_route_to() (napalm.base.base.NetworkDriver method)

 	get_snmp_information() (napalm.base.base.NetworkDriver method)

 	get_users() (napalm.base.base.NetworkDriver method)

 	get_vlans() (napalm.base.base.NetworkDriver method)

H

 	
 	has_pending_commit() (napalm.base.base.NetworkDriver method)

I

 	
 	is_alive() (napalm.base.base.NetworkDriver method)

L

 	
 	load_merge_candidate() (napalm.base.base.NetworkDriver method)

 	
 	load_replace_candidate() (napalm.base.base.NetworkDriver method)

 	load_template() (napalm.base.base.NetworkDriver method)

N

 	
 	NetworkDriver (class in napalm.base.base)

O

 	
 	open() (napalm.base.base.NetworkDriver method)

P

 	
 	ping() (napalm.base.base.NetworkDriver method)

 	
 	post_connection_tests() (napalm.base.base.NetworkDriver method)

 	pre_connection_tests() (napalm.base.base.NetworkDriver method)

R

 	
 	rollback() (napalm.base.base.NetworkDriver method)

T

 	
 	traceroute() (napalm.base.base.NetworkDriver method)

 		EOS	IOS	IOSXR	IOSXR_NETCONF	JUNOS	NXOS	NXOS_SSH

 	get_arp_table	✅	✅	❌	❌	❌	❌	✅

 	get_bgp_config	✅	✅	✅	✅	✅	❌	❌

 	get_bgp_neighbors	✅	✅	✅	✅	✅	✅	✅

 	get_bgp_neighbors_detail	✅	✅	✅	✅	✅	❌	❌

 	get_config	✅	✅	✅	❌	✅	✅	✅

 	get_environment	✅	✅	✅	✅	✅	✅	✅

 	get_facts	✅	✅	✅	✅	✅	✅	✅

 	get_firewall_policies	❌	❌	❌	❌	❌	❌	❌

 	get_interfaces	✅	✅	✅	✅	✅	✅	✅

 	get_interfaces_counters	✅	✅	✅	✅	✅	❌	✅

 	get_interfaces_ip	✅	✅	✅	✅	✅	✅	✅

 	get_ipv6_neighbors_table	❌	✅	❌	❌	✅	❌	❌

 	get_lldp_neighbors	✅	✅	✅	✅	✅	✅	✅

 	get_lldp_neighbors_detail	✅	✅	✅	✅	✅	✅	✅

 	get_mac_address_table	✅	✅	✅	✅	✅	✅	✅

 	get_network_instances	✅	✅	❌	❌	✅	✅	✅

 	get_ntp_peers	❌	✅	✅	✅	✅	✅	✅

 	get_ntp_servers	✅	✅	✅	✅	✅	✅	✅

 	get_ntp_stats	✅	✅	✅	✅	✅	✅	❌

 	get_optics	✅	✅	❌	❌	✅	❌	✅

 	get_probes_config	❌	✅	✅	✅	✅	❌	❌

 	get_probes_results	❌	❌	✅	✅	✅	❌	❌

 	get_route_to	✅	❌	❌	❌	❌	❌	❌

 	get_snmp_information	✅	✅	✅	✅	✅	✅	✅

 	get_users	✅	✅	✅	✅	✅	✅	✅

 	get_vlans	✅	✅	❌	❌	✅	✅	✅

 	is_alive	✅	✅	✅	✅	✅	✅	✅

 	ping	✅	✅	❌	❌	✅	✅	✅

 	traceroute	✅	✅	✅	✅	✅	✅	✅

 	✅ - supported

 	❌ - not supported

 	☠ - broken

 _static/down.png

_static/comment.png

_static/down-pressed.png

_static/minus.png

_static/plus.png

_static/file.png

_static/logo.png

_static/up-pressed.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to NAPALM’s documentation!

 		
 Installation

 		
 Full installation

 		
 OS Package Managers

 		
 FreeBSD

 		
 Dependencies

 		
 napalm-ios dependencies

 		
 napalm-iosxr dependencies

 		
 napalm-junos dependencies

 		
 Tutorials

 		
 Outline

 		
 Installation

 		
 Tools

 		
 Install

 		
 Setting up the lab

 		
 Working directory

 		
 Arista vEOS

 		
 Starting Vagrant

 		
 Sample files

 		
 Programming samples

 		
 Load/Replace configuration

 		
 Changing the Configuration

 		
 Connecting to the Device

 		
 Replacing the Configuration

 		
 Merging Configuration

 		
 Committing the Configuration with a Required Confirmation

 		
 Immediately Canceling a Pending Commit-Confirm

 		
 Allowing the Revert Timer to Expire

 		
 Rollback Changes

 		
 Disconnecting

 		
 Context Manager

 		
 Extend Driver

 		
 Extending a Driver

 		
 Creating a Custom Method

 		
 Custom Driver Notes

 		
 Wrapping up

 		
 Shutting down

 		
 Next Steps

 		
 napalm-ansible

 		
 Modules

 		
 Install

 		
 Dependencies

 		
 Examples

 		
 A More Detailed Example

 		
 Unit tests: Mock driver

 		
 Overview

 		
 Replacing a standard driver by a mock

 		
 Mocked data

 		
 Validating deployments

 		
 Documentation

 		
 Example

 		
 Skipped tasks

 		
 CLI & Ansible

 		
 Why this and what’s next

 		
 Supported Devices

 		
 General support matrix

 		
 Configuration support matrix

 		
 Getters support matrix

 		
 Other methods

 		
 Available configuration templates

 		
 Caveats

 		
 EOS

 		
 IOS

 		
 NXOS

 		
 IOS-XR (NETCONF)

 		
 Optional arguments

 		
 List of supported optional arguments

 		
 The transport argument

 		
 Command Line Tool

 		
 Debug Mode

 		
 NetworkDriver

 		
 YANG

 		
 napalm-logs

 		
 Integrations

 		
 napalm-ansible

 		
 modules

 		
 Contributing

 		
 How to Contribute

 		
 New Feature

 		
 Proposing a new method

 		
 Implementing an already defined method

 		
 Bugfixes

 		
 Documentation

 		
 Proposing a new driver

 		
 NAPALM Core Developers

 		
 Community Drivers

 		
 Development

 		
 Testing Framework

 		
 Features

 		
 Using the testing framework

 		
 Examples

 		
 Testing Matrix

 		
 Triaging Issues and Pull Requests

 		
 Labels

 		
 Milestone

 		
 Projects

 		
 Hackathons

 		
 Hackathon 2016

 		
 Introduction

 		
 Quick Information

 		
 Information

